Math 131 Day 38

My Office Hours: M & W 12:30–2:00, Tu 2:30–4:00, & F 1:15-2:30 or by appointment. Math Intern Sun: 12-6pm; M 3-10pm; Tu 2-6, 7-10pm; W and Th: 5-10 pm in Lansing 310. Website: http://math.hws.edu/~mitchell/Math131S13/index.html.

Reading

- 1. a) ReadSection 9.1 on Taylor Polynomials, through page 595.
 - b) Review Section 8.6 on Alternating Series. Skip from the bottom of page 580 through 581. Then read pages 582–594. Also review the **online notes**. You should know the definitions of **Absolute** and **Conditional Convergence**.
 - c) Review the chart on page 584. It is a good guide to
- 2. Review the Handout on Taylor Polynomials.

Two Newest Tests

- 1. The Alternating Series Test. Assume $a_n > 0$. The alternating series $\sum_{n=0}^{\infty} (-1)^n a_n$ converges if the following two conditions hold:
 - $\mathbf{a)} \lim_{n \to \infty} a_n = 0$
 - **b)** $a_{n+1} \leq a_n$ for all n (i.e., a_n is decreasing)
- **2. Absolute Convergence Test.** If the series $\sum_{n=1}^{\infty} |a_n|$ converges, then so does the series $\sum_{n=1}^{\infty} a_n$.

Practice

- 1. Basics: Page 585 # 11, 13, and 17. More interesting: Page 585 # 21 and 23.
- 2. Do you understand the difference between absolute and conditional convergence: Page 585 #39, 41, 43, and 45.

Hand In

1. Determine whether the following series converge conditionally, absolutely, or not at all. What strategy may save you work?

a)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt[3]{n^4 + 1}}$$
 b) $\sum_{n=1}^{\infty} \frac{\cos(n\pi)}{\sqrt{n+10}}$ c) $\sum_{n=1}^{\infty} \frac{(-7)^{n+1}}{n!}$

$$\mathbf{b)} \ \sum_{n=1}^{\infty} \frac{\cos(n\pi)}{\sqrt{n+10}}$$

c)
$$\sum_{n=1}^{\infty} \frac{(-7)^{n+1}}{n!}$$

- **2. a)** Page 585 #44
 - **b)** Determine whether $\sum_{n=1}^{\infty} (-1)^n \frac{(n!)^3}{(3n)!}$
- 3. Taylor polynomials. Let $f(x) = e^{-x}$. Determine $p_5(x)$ centered at a = 0. Then use the pattern to determine $p_n(x)$. Write your answer using summation notation.
- **4.** Taylor polynomials. Let $f(x) = \ln(x+1)$. Determine $p_4(x)$ centered at a=0. Then use the pattern to determine $p_n(x)$. Write your answer using summation notation, if you can.
- 5. Work on WeBWork TaylorPoly (2 problems, Due Tuesday). Finish WeBWork Day 37 (Due Sunday night.)