Math 131 Day 42

- 1. The final exam is cumulative. The material listed below constitutes 90 to 95% of the material on the exam:
 - a) Riemann Sums: Drawing upper and lower sums, determining the formula for a simple Riemann sum and computing its limit as $n \to \infty$;
 - b) antidifferentiation techniques including substitution, parts (including parts twice), partial fractions (including repeated factors), trig substitutions, low powers of trig functions functions (e.g., $\cos^2 x$, $\sin^2 x$, $\tan^2 x$, $\sec^2 x$). You should be able to do integrals such as $\int \cos^9(4x) \sin^4(4x) dx$ by splitting off an odd power. I will give you the reduction formulas for high powers of trig functions, e.g. $\int \cos^n x dx = \frac{1}{n} \cos^{n-1} x \sin x + \frac{n-1}{n} \int \cos^{n-2} x dx$;
 - c) relating the graphs of f(x) and $F(x) = \int f(x) dx$
 - d) applications: area between curves, volumes (including revolutions around the y axis), average value, work, and arc length
 - e) L'Hopital's rule including indeterminate forms such as 1^{∞} , ∞^0 , $0 \cdot \infty$;
 - f) improper integrals of types: e.g. $\int_a^\infty f(x) dx$ or $\int_{-\infty}^a f(x) dx$ or $\int_a^b f(x) dx$ where f is not defined at one of a or b. Know the p-power theorem for $\int_1^\infty \frac{1}{x^p} dx$
 - g) sequences: finding limits, KNOW key limits
 - h) series: convergent (divergent) series, partial sums, telescoping, integral test, n-th term test, geometric series test, direct comparison, limit comparison, ratio test, root test, alternating series, absolute and conditional convergence, absolute convergence test, ratio test extension;
 - i) power series: finding the radius and interval of convergence;
 - j) Taylor polynomials and Taylor series.
 - k) Final Exam: Monday, May 13, 2013 1:30-4:30 PM.

Review Session, Office Hours, Practice Problems

- 1. a) Review Session Thursday at 10:00–12:00 pm in Gulick 206A. Try the practice problems and test.
 - b) My Office Hours: Wednesday: 1:30-3:00. Friday 10:30-12:00. Other times by appointment.
 - c) Practice: Review the previous practice tests, exams, and labs. There are hundreds of solved problems on line.
- 2. Math Intern Hours for next week: Dave Brown is working this upcoming Sunday and Monday as normal and then taking Tuesday the last day of classes off. Then his schedule will be:
 - 1) Wed 5/8 3-9
 - 2) Thur 5/9 2-5 6-9
 - 3) Fri 5/10 12-6
 - 4) Sat 5/11 12-6
 - **5)** Sun 5/12 12-6
 - **6)** Mon 5/13 12-6
- **3.** Having trouble with a particular topic? Review the online notes.
- 4. Do the online practice problems. The answers are posted.
- **5.** Do the online Practice Exam. It is a bit longer than the actual exam will be. Try this after you have practiced. The answers will be posted after the Review Session.
- 6. Extra Credit: See the Day 41 handout (which is also on line).

Math 131 Day 42: Integral Quick Check

	Integral	Technique	Intuition/Reasoning
1	$\int \frac{x}{x^2 - 4} \ dx$		
2	$\int \frac{x^2 - 4}{x} \ dx$		
3	$\int \frac{x^2}{x^6+1} \ dx$		
4	$\int xe^x \ dx$		
5	$\int \frac{e^{\sqrt{x}}}{\sqrt{x}} dx$		
6	$\int x \cos x \ dx$		
7	$\int e^x \cos x \ dx$		
8	$\int x \sec^2 x \ dx$		
9	$\int_{-\pi}^{\pi} x^2 \sin^7 x \ dx$		
10	$\int x \ln x \ dx$		
11	$\int \ln x \ dx$		
12	$\int \tan x \ dx$		
13	$\int x \tan(x^2 + 1) dx$		
14	$\int \frac{4}{(4-x^2)^{3/2}} dx$		
15	$\int \frac{-4x+4}{(x-2)^2x} dx$		
16	$\int \frac{4x+8}{x^2+4x+5} dx$		

	Integral	Technique	Intuition/Reasoning
1	$\int \frac{4}{x^2 - 4} \ dx$		
2	$\int \frac{x}{x^2 - 4} \ dx$		
3	$\int \frac{4}{x^2 + 4} \ dx$		
4	$\int x\sqrt{4-x^2}\ dx$		
5	$\int \frac{\sqrt{x^2 - 1}}{x} \ dx$		
6	$\int \frac{1}{\sqrt{1-x^2}} \ dx$		
7	$\int \sin^3 x \cos^{4/5} x \ dx$		
8	$\int \sin^3 x \cos^5 x \ dx$		
9	$\int \sin^2 x \cos^4 x \ dx$		
10	$\int \sec^2 x \tan^{-5} x \ dx$		
11	$\int \sec^4 x \tan^5 x \ dx$		