
Math 131 Lab 14: Series

1. Determine whether these arguments are correct. If not, correct them.

a) Determine whether

∞∑
n=1

(−1)n(2n4 + 1)

6n9 + 2
converges absolutely, conditionally, or diverges. ARGUMENT: Use the

alternating series test with an = 2n4+1
6n9+2 > 0. Check the two conditions: (i): lim

n→∞
an = lim

n→∞

2n4 + 1

6n9 + 2

HPwrs
=

lim
n→∞

2n4

6n9
= lim

n→∞

2

6n5
= 0.X(ii): Decreasing? Take the derivative! (You can’t just say the bottom gets bigger since

the top gets bigger, too!) f(x) = 2x4+1
6x9+2 so

f ′(x) =
8x3(6x9 + 2)− (2x4 + 1)54x8

(6x9 + 1)2
=
−60x12 − 54x8 + 16x3

(6x9 + 1)2
< 0

so f(x) and an are decreasing.XSo by the Alternating Series Test the series converges conditionally.

b) Determine whether

∞∑
n=1

(−1)n(2n + 1)

6n + 2
converges absolutely, conditionally, or diverges. ARGUMENT: Notice

∞∑
n=1

∣∣∣∣ (−1)n(2n + 1)

6n + 2

∣∣∣∣ =

∞∑
n=1

2n + 1

6n + 2
= lim

n→∞

2n + 1

6n + 2

HPwrs
= lim

n→∞

2n

6n
=

1

3
. So the series converges absolutely.

c) Determine the radius and interval of convergence for the power series
∞∑

n=0

xn

3n2 + 1
. ARGUMENT: We know that

the series converges at its center a = 0. For any x 6= 0

lim
n→∞

∣∣∣∣An+1

An

∣∣∣∣ = lim
n→∞

∣∣∣∣ xn+1

3(n + 1)2 + 1
· 3n2 + 1

xn

∣∣∣∣ = lim
n→∞

∣∣∣∣ 3n2 + 1

3n2 + 6n + 4
· x
∣∣∣∣ HPwrs

= lim
n→∞

∣∣∣∣3n2

3n2
· x
∣∣∣∣ = |x|.

By the ratio test, the series converges if |x| < 1 and diverges when |x| > 1. The radius of convergence is

R = 1. Check the endpoints a − R = 0 − 1 = −1 and a + R = 0 + 1 = 1. For x = 1: We get

∞∑
n=0

1

3n2 + 1
.

Since 0 < 1
3n2+1 < 1

n2 and since

∞∑
n=0

1

n2
converges (p-series, p = 2 > 1), then by direct comparison

∞∑
n=0

1

3n2 + 1

converges. For x = −1: We get

∞∑
n=0

(−1)n

3n2 + 1
. However, we just saw that

∞∑
n=0

∣∣∣∣ (−1)n

3n2 + 1

∣∣∣∣ =

∞∑
n=0

1

3n2 + 1
converges.

Hence,

∞∑
n=0

(−1)n

3n2 + 1
converges by the absolute convergence test. The interval of convergence is [−1, 1] and includes

both endpoints.

2. Determine whether these series converge absolutely, conditionally, or not at all. (Hint: For a couple of these consider
the Ratio Test Extension for absolute convergence/divergence)

a)

∞∑
n=1

(−1)n(2n + 1)

3n2 + 2
b)

∞∑
n=1

(−1)nn2n

3n+1
c)

∞∑
n=1

n!

(−3)n

3. Find the radius R and interval of convergence for each of these series. Remember the endpoints.

a)

∞∑
n=1

(2x)n

n2
b)

∞∑
n=1

(−1)nn!xn

4n
c)

∞∑
n=1

(−1)nx2n

9n

d)

∞∑
n=0

(x− 4)n

n + 1
e)

∞∑
n=1

n(x− 1)n

32n
f)

∞∑
n=1

n!xn

(2n)!

4. a) Find the Taylor polynomial p4(x) for the function f(x) = e−2x centered at a = 0.

b) What is formula for the infinite degree Taylor polynomial p∞(x). Express your answer as a series.

c) What is the radius of convergence of this series for p∞(x)?

5. Find the radius of convergence R for

∞∑
n=1

n!xn

1 · 3 · 5 · · · (2n + 1)
and (Bonus!) for

∞∑
n=1

nnxn

n!
.
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Brief Answers

1. a) Wrong. (b) Wrong. (c) Correct. This is a model of how I want your answers in #3 to be!

2. Conditional, Absolute, Diverge.

3. Lots of justification (words) required!

a) [−1/2, 1/2] b) {0} c) (−3, 3) d) [3, 5) e) (−8, 10) f) (−∞,∞)

4. a) p4(x) = 1− 2x + 2x2 − 4
3x

3 + 2
3x

4.

b) p∞(x) =

∞∑
k=0

(−2)k

k!
xk.

c) The interval of convergence is (−∞,∞).

5. a) R = 2.

Background

1. Power Series. For a power series

∞∑
n=0

an(x− a)n centered at a, precisely one of the following is true.

a) The series converges only at x = a.

b) There is a real number R > 0 so that the series converges absolutely for |x− a| < R and diverges for |x− a| > R.

c) The series converges for all x.

NOTE: In case (b) the power series may converge at both endpoints, either endpoint, or neither endpoint.
You have to check the convergence at the endpoints separately. Here’s what the intervals of convergence can
look like:

Case 1 : R = 0
a
•

Case 2 : R 6= 0, ∞
a−R a a+R

(a−R, a+R)

( )•
a−R a a+R

[a−R, a+R)

[ )•

a−R a a+R

(a−R, a+R]

( ]•
a−R a a+R

[a−R, a+R]

[ ]•

Case 3 : R =∞
a

2. The Ratio Test Extension. Assume that

∞∑
n=1

an is a series with non-zero terms and let r = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣.
1. If r < 1, then the series

∑
an converges absolutely.

2. If r > 1 (including ∞), then the series
∑

an diverges.

3. If r = 1, then the test is inconclusive. The series may converge or diverge.

3. The Alternating Series Test. Assume an > 0. The alternating series

∞∑
n=1

(−1)nan converges if the follow two

conditions hold:

a) lim
n→∞

an = 0

b) an+1 ≤ an for all n (i.e., an is decreasing which can also be tested by showing f ′(x) < 0).

4. Absolute Convergence Test. If the series

∞∑
n=1

|an| converges, then so does the series

∞∑
n=1

an.
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Lab 14 Answers

1. a) Wrong. The student never checked for absolute convergence. ARGUMENT: First we check absolute convergence.
∞∑

n=1

∣∣∣∣ (−1)n(2n4 + 1)

6n9 + 2

∣∣∣∣ =

∞∑
n=1

2n4 + 1

6n9 + 2
. Notice that 2n4+1

6n9+2 ≈
1
n5 . So let’s use the limit comparison test. The terms

of the series are positive and

lim
n→∞

an
bn

= lim
n→∞

2n4 + 1

6n9 + 2
· n

5

1
= lim

n→∞

2n9 + n5

6n9 + 2

HPwrs
= lim

n→∞

2n9

6n9
=

1

3
.

Since
∑∞

n=1
1
n5 converges (p-series with p = 5 > 1), then

∞∑
n=1

∣∣∣∣ (−1)n(2n4 + 1)

6n9 + 2

∣∣∣∣ converges by the limit comparison

test. So the series converges absolutely.

b) Wrong. Puleeze never do this! You might start with the alternating series test with an = 2n+1
6n+2 6= 0. Check the

two conditions (i): lim
n→∞

an = lim
n→∞

2n + 1

6n + 2

HPwrs
= lim

n→∞

2n

6n
=

1

3
. So the series diverges by the nth term test (not the

alternating series test). It’s the nth term test.

c) Correct. This is what I want your answers in #3 to be!

2. a)
∑∞

n=1
(−1)n(2n+1)

3n2+2 . The series is similar to
∑∞

n=1
1
n , so it probably will not converge absolutely. ARGUMENT: Use

the alternating series test with an = 2n+1
3n2+2 > 0. Check the two conditions: (i): lim

n→∞
an = lim

n→∞

2n + 1

3n2 + 2

HPwrs
=

lim
n→∞

2n

3n2
= lim

n→∞

2

3n
= 0.X(ii): Decreasing? Take the derivative. (You can’t just say the bottom gets bigger since

the top gets bigger, too!) f(x) = 2x+1
3x2+2 so

f ′(x) =
2(3x2 + 2)− (2x + 1)6x

(3x2 + 2)2
=
−6x2 − 6x8 + 4

(3x2 + 2)2
< 0X (x ≥ 1)

so f(x) and an are decreasing. By the Alternating Series Test the series converges. Now check absolute convergence.∑∞
n=1

∣∣∣ (−1)n(2n+1)
3n2+2

∣∣∣ =
∑∞

n=1
2n+1
3n2+2 . Compare to

∑∞
n=1

1
n . Notice both 1

n > 0 and 2n+1
3n2+2 > 0. Then

lim
n→∞

an
bn

= lim
n→∞

2n + 1

3n2 + 2
· n

1
= lim

n→∞

2n2 + n

3n2 + 2

HPwrs
= lim

n→∞

2n2

3n2
=

2

3
> 0.

Since
∑∞

n=0
1
n diverges by the p-series test (p = 1), then by the limit comparison test

∑∞
n=0

2n+1
3n2+1 also diverges.

So the series is conditionally convergent.

b)
∑∞

n=1
(−1)nn2n

3n+1 . Because of the nth powers, try the ratio test first (testing for absolute convergence) with an =
n2n

3n+1 6= 0.

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣ (−1)n+1(n + 1)2n+1

3n+2
· 3n+1

(−1)nn2n

∣∣∣∣ = lim
n→∞

∣∣∣∣2(n + 1)

3n

∣∣∣∣ HPwrs
= lim

n→∞

2n

3n
=

2

3
< 1.

By the ratio test the series converges absolutely.

c)
∑∞

n=1
n!

(−3)n . Because of the nth power and factorial, try the ratio test first (testing for absolute convergence)

with an = n!
(−3)n 6= 0.

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣ (n + 1)!

(−3)n+1
· (−3)n

n!

∣∣∣∣ = lim
n→∞

∣∣∣∣n + 1

3

∣∣∣∣ =∞ > 1.

By the ratio test the series diverges.
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3. a)

∞∑
n=0

(2x)n

n2
. ARGUMENT: The series converges at its center a = 0. Apply the ratio test. For any x 6= 0

lim
n→∞

∣∣∣∣An+1

An

∣∣∣∣ = lim
n→∞

∣∣∣∣ (2x)n+1

(n + 1)2
· n2

(2x)n

∣∣∣∣ = lim
n→∞

∣∣∣∣ n22x

(n + 1)2

∣∣∣∣ = lim
n→∞

∣∣∣∣ n2

n2 + 2n + 1
· 2x
∣∣∣∣ HPwrs

= lim
n→∞

∣∣∣∣n2

n2
· 2x
∣∣∣∣ = 2|x|.

By the ratio test, the series converges if 2|x| < 1 ⇐⇒ |x| < 1
2 and diverges when |x| > 1

2 . The radius of
convergence is R = 1

2 . Check the endpoints − 1
2 and 1

2? For x = 1
2 : We get

∞∑
n=0

(2( 1
2 ))n

n2
=

∞∑
n=0

1

n2

which converges by the p-series test (p = 2 > 1). For x = − 1
2 : We get

∞∑
n=0

(2(− 1
2 ))n

n2
=

∞∑
n=0

(−1)n

n2

But this series converges absolutely (we just did it). The interval of convergence is [− 1
2 ,

1
2 ].

b)
∞∑

n=0

(−1)nn!xn

4n
. ARGUMENT: The series converges at its center a = 0. Apply the ratio test. For any x 6= 0

lim
n→∞

∣∣∣∣An+1

An

∣∣∣∣ = lim
n→∞

∣∣∣∣ (−1)n+1(n + 1)!xn+1

4(n + 1)
· 4n

(−1)nn!xn

∣∣∣∣ = lim
n→∞

∣∣∣∣ (n + 1)n

n + 1
· x
∣∣∣∣ = lim

n→∞
|nx| =∞ > 1.

By the ratio test, the series diverges when |x| > 0. The radius of convergence is R = 0. The series only converges
at x = 0.

c)

∞∑
n=0

(−1)nx2n

9n
. The series converges at its center a = 0. Apply the ratio test. For any x 6= 0

lim
n→∞

∣∣∣∣An+1

An

∣∣∣∣ = lim
n→∞

∣∣∣∣ (−1)n+1x2(n+1)

9n+1
· 9n

(−1)nx2n

∣∣∣∣ = lim
n→∞

∣∣∣∣x2

9

∣∣∣∣ .
By the ratio test, the series converges if |x

2

9 | < 1 ⇐⇒ |x2| < 9 ⇐⇒ |x| < 3 and diverges when |x| > 3. The
radius of convergence is R = 3. Check the endpoints a−R = 0− 3 = −3 and a + R = 0 + 3 = 3. For x = 3: We
get

∞∑
n=0

(−1)n32n

9n
=

∞∑
n=0

(−1)n

which diverges by the geometric series test (|r| = 1). The same is true for x = −3: Again we get

∞∑
n=0

(−1)n(−3)2n

9n
=

∞∑
n=0

(−1)n.

The interval of convergence is (−3, 3).

d)

∞∑
n=1

(x− 4)n

n + 1
. ARGUMENT: The series converges at its center a = 4. Apply the ratio test. For any x 6= 4

lim
n→∞

∣∣∣∣An+1

An

∣∣∣∣ = lim
n→∞

∣∣∣∣ (x− 4)n+1

n + 2
· n + 1

(x− 4)n

∣∣∣∣ = lim
n→∞

∣∣∣∣n + 2

n + 1
· (x− 4)

∣∣∣∣ HPwrs
= lim

n→∞

∣∣∣n
n
· (x− 4)

∣∣∣ = |x− 4|.

By the ratio test, the series converges if |x− 4| < 1 and diverges when |x− 4| > 1. The radius of convergence is
R = 1. Check the endpoints: a−R = 4− 1 = 3 and a + R = 4 + 1 = 5. For x = 3: We get

∞∑
n=0

(−1)n

n + 1

4



Use the alternating series test with an = 1
n+1 6= 0. Check the two conditions. (1) lim

n→∞
1

n+1 = 0Xand (2) an+1 ≤ an

since 1
n+2 < 1

n+1 (decreasing).XSo the series converges at x = 3 by the alternating series test. For x = 5: We get

∞∑
n=0

1

n + 1
.

Use the limit comparison test with
∑∞

n=0
1
n .

lim
n→∞

an
bn

= lim
n→∞

1

n + 1
· n

1

HPwrs
= 1.

Since
∑∞

n=0
1
n diverges by the p-series test (p = 1), then by the limit comparison test

∑∞
n=0

1
n+1 also diverges.

The interval of convergence is [3, 5).

e)

∞∑
n=1

n(x− 1)n

32n
. The series converges at its center a = 1. Apply the ratio test. For any x 6= 1

lim
n→∞

∣∣∣∣An+1

An

∣∣∣∣ = lim
n→∞

∣∣∣∣ (n + 1)(x− 1)n+1

32(n+1)
· 32n

n(x− 1)n

∣∣∣∣ = lim
n→∞

∣∣∣∣n + 1

32n
· (x− 1)

∣∣∣∣ HPwrs
= lim

n→∞

∣∣∣ n
9n
· (x− 1)

∣∣∣ =

∣∣∣∣x− 1

9

∣∣∣∣ .
By the ratio test, the series converges if

∣∣∣ (x−1)9

∣∣∣ < 1 ⇐⇒ |x− 1| < 9 and diverges when |x− 1| > 9. The radius

of convergence is R = 9. What about the endpoints a− R = 1− 9 = −8 and a + R = 1 + 9 = 10? For x = −8:
We get

∞∑
n=1

n(1 + 8)2n

32n
=

∞∑
n=1

n(−9)
n

9n
=

∞∑
n=1

(−1)nn.

But lim
n→∞

(−1)nn DNE, so by the nth term test the series diverges. For x = 10: We get

∞∑
n=1

n(10− 1)n

9n
=

∞∑
n=1

n

and so the series diverges by the nth term test again. The interval of convergence is (−8, 10).

f)

∞∑
n=1

n!xn

(2n)!
. The series converges at its center a = 0. Apply the ratio test. For any x 6= 0

lim
n→∞

∣∣∣∣An+1

An

∣∣∣∣ = lim
n→∞

∣∣∣∣ (n + 1)!xn+1

(2n + 2)!
· (2n)!

n!xn

∣∣∣∣ = lim
n→∞

∣∣∣∣ n + 1

(2n + 1)(2n + 2)
· x
∣∣∣∣ = lim

n→∞

∣∣∣∣ 1

4n + 2
· x
∣∣∣∣ = 0 < 1.

By the ratio test, the series for all x The interval of convergence is (−∞,∞).

4. a) Find the Taylor polynomial p4(x) for the function f(x) = e−2x centered at a = 0.

b) What is formula for the infinite degree Taylor polynomial p∞(x). Express your answer as a series.

c) What is the radius of convergence of this series for p∞(x)?

5. a) The formula for pn(x) with center a = 0 is given by

pn(x) = f(0) + f ′(0) · (x− 0) +
f ′′(0)

2!
(x− 0)2 +

f ′′′(0)

3!
(x− 0)3 + · · ·+ f (n)(0)

n!
(x− 0)n.

So we need to calculate the derivatives of f(x) = e−2x and then evaluate them at 0. Well,

f(x) = e−2x f(0) = 1 = (−2)0

f ′(x) = −2e−2x f ′(0) = −2 = (−2)1

f ′′(x) = (−2)2e−2x f ′′(0) = (−2)2

f ′′′(x) = (−2)3e−2x f ′′(0) = (−2)3

f ′′′(x) = (−2)4e−2x f ′′(0) = (−2)4

...

f (k)(x) = (−2)ke−2x f ′(k)(0) = (−2)k
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p4(x) = 1− 2(x− 0) +
4

2!
(x− 0)2 − 8

3!
(x− 0)3 +

16

4!
(x− 0)4) = 1− 2x + 2x2 − 4

3
x3 +

2

3
x4.

b) p∞(x) =

∞∑
k=0

(−2)k

k!
xk.

c)

∞∑
k=0

(−2)k

k!
xk. The series converges at its center a = 0. Apply the ratio test. For any x 6= 0

lim
n→∞

∣∣∣∣An+1

An

∣∣∣∣ = lim
n→∞

∣∣∣∣ (−2)n+1xn+1

(n + 1)!
· n!

(−2)nxn

∣∣∣∣ = lim
n→∞

∣∣∣∣ 2

n + 1
· x
∣∣∣∣ = 0 < 1.

By the ratio test, the series for all x The interval of convergence is (−∞,∞).

6. a)
∑∞

n=1
n!xn

1·3·5···(2n+1) . Use the ratio test.

lim
n→∞

∣∣∣∣An+1

An

∣∣∣∣ = lim
n→∞

∣∣∣∣ (n + 1)!xn+1

1 · 3 · 5 · · · (2n + 3)
· 1 · 3 · 5 · · · (2n + 1)

n!xn

∣∣∣∣ = lim
n→∞

∣∣∣∣ (n + 1)x

2n + 3

∣∣∣∣ HPwrs
= lim

n→∞

∣∣∣nx
2n

∣∣∣ = lim
n→∞

∣∣∣x
2

∣∣∣ .
By the ratio test, the series converges if |x2 | < 1 ⇐⇒ |x| < 2 and diverges when |x| > 2. The radius of convergence
is R = 2.

b)
∑∞

n=1
nnxn

n! Use the ratio test.

lim
n→∞

∣∣∣∣An+1

An

∣∣∣∣ = lim
n→∞

∣∣∣∣ (n + 1)n+1xn+1

(n + 1)!
· n!

nnxn

∣∣∣∣ = lim
n→∞

∣∣∣∣ (n + 1)n+1x

(n + 1)nn

∣∣∣∣
= lim

n→∞

∣∣∣∣ (n + 1)nx

nn

∣∣∣∣
= lim

n→∞

∣∣∣∣(n + 1

n

)n

· x
∣∣∣∣ = lim

n→∞

∣∣∣∣(1 +
1

n

)n

· x
∣∣∣∣ = |ex| .

By the ratio test, the series converges if |ex| < 1 ⇐⇒ |x| < 1
e . The radius of convergence is R = 1

e .
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