
Application: Area Between Two Curves

In this chapter we extend the notion of the area under a curve and consider the
area of the region between two curves. To solve this problem requires only a minor
modification of our point of view. We’ll not need to develop any additional tech-
niques of integration for the moment. However, we will also see that that we can
think of the process used to find the area between two curves as an accumulation
process, as we discussed earlier when we found the net distance traveled by inte-
grating a velocity function. This theme of accumulation will be critical in the sub-
sequent applications we carry out. Make sure you spend some time understanding
this idea. Our objectives for this chapter are to

• Determine the area between two continuous curves using integration.

• Similarly, determine the area between two intersecting curves.

• Understand integration as an accumulation process.

6.1 Area of a Region Between Two Curves

With just a few modifications, we extend the application of definite integrals from
finding the area of a region under a curve to finding the area of a region between
two curves.

Consider two functions f and g that are continuous on the interval [a, b].

Figure 6.1: Find the area of the region
between the curves f and g. (Diagram
from Larson & Edwards)

In Figure 6.1, the graphs of both f and g lie above the x-axis, and the graph of g
lies below the graph of f . There we can geometrically interpret the area of the re-
gion between the graphs as the area of the region under the graph of g subtracted
from the area of the region under the graph of f , as shown in Figure 6.2

The Riemann Sum Approach

Now let’s step back and take a slightly different point of view on this. Remember
that definite integrals are really limits of Riemann sums. So suppose we use a reg-
ular partition of [a, b] into n equal subintervals of width ∆x. We use the partition
to subdivide the region between the two curves into n rectangles. We won’t draw
all of them, but rather we will draw a single representative rectangle (see Figure 6.3).
The width of the rectangle is ∆x and the height is f (xi) − g(xi) where xi is the
right-hand endpoint of the ith subinterval.
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Figure 6.2: Find the area of the region
between the curves f and g when both
f and g lie above the x-axis and g lies
below f . (Diagram from Larson &
Edwards)

Figure 6.3: The area of the ith rectangle
is [ f (xi) − g(xi)]∆x. (Diagram from
Larson & Edwards).

The area of the representative rectangle is

height×width = [ f (xi)− g(xi)]∆x.

We add up all the n rectangles to get an approximation to the total area between
the curves:

Approximate Area beween f and g =
n

∑
i=1

[ f (xi)− g(xi)]∆x.

To improve the approximation we take the limit as n→ ∞.

lim
n→∞

n

∑
i=1

[ f (xi)− g(xi)]∆x.

Now because both f and g are continuous we know that this limit exists and, in
fact, equals a definite integral. Thus, the area of the given region is

Area beween f and g = lim
n→∞

n

∑
i=1

[ f (xi)− g(xi)]∆x =
∫ b

a
[ f (x)− g(x)] dx.

Let’s summarize what we have found in a theorem.

THEOREM 6.1. If f and g are continuous on [a, b] and g(x) ≤ f (x) for all x in [a, b], then the
area of the region bounded by the graphs of f and g and the vertical lines x = a and x = b
is

Area beween f and g =
∫ b

a
[ f (x)− g(x)] dx.

Note: This area will always be non-negative.

Notice that the theorem gives the same answer as our earlier geometric argu-
ment in Figure 6.2 However, unlike in Figure 6.2, notice that the theorem does not
say that both curves have to lie above the x-axis. The same integral∫ b

a
[ f (x)− g(x)] dx
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works as long as f and g are continuous on [a, b] and g(x) ≤ f (x) for all x in the
interval [a, b]. The reason this same integral remains valid when one or both curves
dip below the x-axis is illustrated in Figure 6.4. The height of a representative
rectangle is always f (x) − g(x). This is the advantage of using Riemann sums
and representative rectangles. It gives us a more general argument than a simple
geometric one in this case.

Figure 6.4: The height of a representa-
tive rectangle is f (x) − g(x) whether
or not one or both curves lie above or
below the x-axis. (Diagram from Larson
& Edwards)

Tip for Success

We will continue to use representative rectangles as we develop further applica-
tions. Drawing a figure with such representative rectangles will help you to write
out the correct integral in these applications.

6.2 Examples

We now take a look at several examples.

EXAMPLE 6.1. Find the area of the region bounded by the graphs of y = x2 + 1 and
y = x3 and the vertical lines x = −1 and x = 1.
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g(x) = x3

f (x) = x2 + 1

Figure 6.5: The area between f and g
with a representative rectangle.

SOLUTION. After quickly plotting the graphs we see that x2 + 1 lies above x3 on the
interval. So let f (x) = x2 + 1 and g(x) = x3. Since both are continuous (polynomials)
Theorem 6.1 applies and we have

Area beween f and g =
∫ b

a
[ f (x)− g(x)] dx =

∫ 1

−1
[(x2 + 1)− x3] dx

=
x3

3
+ x− x4

4

∣∣∣∣1
−1

=
(

1
3

+ 1− 1
4

)
−
(
−1

3
− 1− 1

4

)
=

8
3

.

Area Enclosed by Two Intersecting Curves

In Example 6.1 we found the area below one curve but above another curve on
a given interval. A more common problem is a slight variation on this. Find the
region enclosed by two intersecting curves. Usually the points of intersection are
not provided and that becomes the first step in solving such a problem.

EXAMPLE 6.2 (Two Intersecting Curves). Find the area of the region enclosed by the
graphs of y = x2 − 2 and y = x. (In a typical problem, not even the graph is given.)
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SOLUTION. Let f (x) = x2 − 2 and g(x) = x. First we find the intersections of the two
graphs:

x2 − 2 = x ⇒ x2 − x− 2 = 0⇒ (x + 1)(x− 2) = 0⇒ x = −1, 2.

Which curve lies above the other on the interval [−1, 2]? We can test an intermediate
point. The point x = 0 is convenient: Notice f (0) = −2 and g(0) = 0. Or we can can
quickly plot the graphs (see Figure 6.6) and see that x lies above x2 − 2 on the interval
[−1, 2]. Since both are continuous (polynomials) Theorem 6.1 applies and we have
(notice that g is ‘on top’). −1 2
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Figure 6.6: The area enclosed by y =
x2 − 2 and y = x with a representative
rectangle.

Area enclosed by g and f =
∫ b

a
[g(x)− f (x)] dx =

∫ 2

−1
[x− (x2 − 2)] dx

=
x2

2
− x3

3
+ 2x

∣∣∣∣2
−1

=
(

2− 8
3

+ 4
)
−
(

1
2

+
1
3
− 2
)

=
9
2

.

EXAMPLE 6.3 (Division into Two Regions). Find the area of the region enclosed by the
graphs of y = x3 and y = x.

SOLUTION. Let f (x) = x3 and g(x) = x. First we find the intersections of the two
graphs:

x3 = x ⇒ x3 − x = 0⇒ x(x2 − 1) = 0⇒ x(x + 1)(x− 1) = 0

⇒ x = −1, 0, 1.

Since there are three points of intersection, we need to determine which curve lies
above the other on each subinterval. On [−1, 0], we can test an intermediate point
x = − 1

2 : f (− 1
2 ) = − 1

8 and g(− 1
2 ) = − 1

2 . So f lies above g. On [0, 1], we test at
the intermediate point x = 1

2 : f ( 1
2 ) = 1

8 and g( 1
2 ) = 1

2 . So g lies above f . Also we
can quickly plot the graphs (see Figure 6.7) and the same behavior. Since both are
continuous (polynomials) Theorem 6.1 applies. However, we will have to split the
integration into two pieces since the top and bottom curves change at the point x = 0
in the interval [−1, 1].
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y = xy = x3

Figure 6.7: The area enclosed by y = x3

and y = x. The top and bottom curve
switch at x = 0. There are two different
representative rectangles.

Area enclosed by g and f =
∫ 0

−1
[x3 − x] dx +

∫ 1

0
[x− x3] dx

=

(
x4

4
− x2

2

) ∣∣∣∣0
−1

+

(
x2

2
− x4

4

) ∣∣∣∣1
0

=
(

[0]−
[

1
4
− 1

2

])
−
([

1
2
− 1

4

]
− [0]

)
=

1
2

.

EXAMPLE 6.4. Find the area of the region enclosed by the graphs of y = x
√

x + 1 and
y = 2x.

SOLUTION. Let f (x) = x
√

x + 1 and g(x) = 2x. First we find the intersections of the
two graphs:

x
√

x + 1 = 2x ⇒ x2(x + 1) = 4x2 ⇒ x3 − 3x2 = 0⇒ x2(x− 3) = 0

⇒ x = 0, 3.

To determine which curve lies above the other on On [0, 3], we can test an intermedi-
ate point, say x = 1: f (1) =

√
2 and g(1) = 2. So g lies above f . We can quickly plot

the graphs (see Figure 6.8). Since both are continuous Theorem 6.1 applies.
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Figure 6.8: The area enclosed by
y = x

√
x + 1 and y = 2x and a

representative rectangle.

Area enclosed by g and f =
∫ 3

0
[2x− x

√
x + 1] dx =

∫ 3

0
2x dx−

∫ 3

0
x
√

x + 1 dx.
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For the second integral we use the substitution

u =
√

x + 1⇒ u2 = x + 1⇒ u2 − 1 = x ⇒ 2u du = dx

and change the limits:

when x = 0, u =
√

0 + 1 = 1; when x = 3, u =
√

3 + 1 = 2.

So ∫ 3

0
2x dx−

∫ 3

0
x
√

x + 1 dx =
∫ 3

0
2x dx−

∫ 2

1
(u2 − 1) · u · 2u du

= x2
∣∣∣∣3
0
−
∫ 2

1
2u4 − u2 du

= (9− 0)−
(

2u5

5
− u3

3

) ∣∣∣∣2
1

= 9−
([

64
5
− 8

3

]
−
[

1
5
− 1

3

])
=

19
15

.

Variations

Here are some additional ‘variations on the theme’ of Theorem 6.1.

EXAMPLE 6.5 (Multiple Curves, Multiple Regions). Find the area of the region enclosed
by the graphs of y = 8− x2, y = 7x, and y = 2x in the first quadrant.

SOLUTION. This time there are three curves to contend with. Since the curves are
relatively simple (an upside-down parabola and two lines through the origin, it is
relatively easy to make a sketch of the region. See Figure 6.9. Let f (x) = 8 − x2,
g(x) = 7x, and h(x) = 2x. A wedge-shaped region is determined by all three curves.
Notice that the ‘top’ curve of the region switches from g(x) to f (x). We find the
intersections of the pairs of graphs:
f (x) = g(x)⇒ 8− x2 = 7x ⇒ x2 + 7x− 8 = 0⇒ (x− 1)(x + 8) = 0⇒ x = 1 (not −8).

f (x) = h(x)⇒ 8− x2 = 2x ⇒ x2 + 2x− 8 = 0⇒ (x− 2)(x + 4) = 0⇒ x = 2 (not −4).

g(x) = h(x)⇒ 7x = 2x ⇒ 5x = 0⇒ x = 0.
The region is thus divided into two subregions and the graph gives the relative

positions of the curves. Since all the functions are continuous Theorem 6.1 applies.
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Figure 6.9: The area enclosed by
y = 8− x2, y = 7x, and y = 2x in
the first quadrant. There are two rep-
resentative rectangles because the top
curve changes.

Area enclosed by f , g, and h =
∫ 1

0
[7x− 2x] dx +

∫ 2

1
[(8− x2)− 2x dx

=
∫ 1

0
[5x] dx +

(
8x− x3

3
− x2

) ∣∣∣∣2
1

=
(

5x2

2

) ∣∣∣∣1
0
+
([

16− 8
3
− 4
]
−
[

8− 1
3
− 1
])

=
(

5
2
− 0
)

+
(

8
3

)
=

31
6

.

YOU TRY IT 6.1. Set up the integrals using the functions f (x), g(x), and h(x) and their
points of intersection that would be used to find the shaded areas in the three regions be-
low.
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YOU TRY IT 6.2. Sketch the regions for each of the following problems before finding the
areas.

(a) Find the area enclosed by the curves y = x3 and y = x2. (Answer: 1/12)

(b) Find the area enclosed by the curves y = x3 + x and y = 3x2 − x. (Answer: 1/2)

(c) Find the area between the curves f (x) = cos x + sin x and g(x) = cos x − sin x over
[0, 2π]. (Answer: 8)

YOU TRY IT 6.3. Sketch each region before finding its area:

(a) The area in the first quadrant enclosed by y = cos x, y = sin x, and the y axis. (An-
swer:

√
2− 1)

(b) The area enclosed by y = x3 and y = 3
√

x. (Answer: 1)

(c) The area enclosed by y = x3 + 1 and y = (x + 1)2. (Answer: 37/12)

(d) Harder integration: The area enclosed by y = x
√

2x + 3 and y = x2. (Answer:
6
5

√
3 + 26

15 .)

EXAMPLE 6.6. Find the area of the region in the first quadrant enclosed by the graphs
of y = 1, y = ln x, and the x- and y-axes.

SOLUTION. It is easy to sketch the region. See Figure 6.10. The curve y = ln x inter-
sects the x-axis at x = 1 and the line y = 1 at x = e. Notice that the ‘bottom’ curve of
the region switches from x-axis to y = ln x at x = 1. The region is divided into two
subregions (one is a square!) and the graph gives the relative positions of the curves.
Since both the functions are continuous Theorem 6.1 applies. 1 e
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Figure 6.10: in the first quadrant en-
closed by the graphs of y = 1, y = ln x,
and the x- and y-axes. There are two
representative rectangles because the
bottom curve changes.

Area =
∫ 1

0
1 dx +

∫ e

1
1− ln x dx

We can rewrite the integral in a more convenient way. Notice that the area the we are
trying to find is really just the rectangle of height 1 minus the area under y = ln x on
the interval [1, e]. (Yet another way of saying this is that we are splitting

∫ e
1 1− ln x dx

into two integrals
∫ e

1 1 dx and
∫ e

1 − ln x dx and then combining the two integrals∫ 1
0 1 dx +

∫ e
1 1 dx into one leaving −

∫ e
1 ln x dx.) We get

Area =
∫ e

0
1 dx−

∫ e

1
ln x dx = e + ???

The problem is that we do not know an antiderivative for ln x. So we need another
way to attack the problem. We describe this below.

6.3 Point of View: Integrating along the y-axis

Reconsider Example 6.6 and change our point of view. Suppose that we drew our
representative rectangles horizontally instead of vertically as in Figure 6.11. The
integration now takes place along the y-axis on the interval [0, 1]. Using inverse
functions, the function y = ln x is viewed as x = g(y) = ey. Now the ‘width’ of a
representative rectangle is ∆y and the (horizontal) ‘height’ of the ith such rectangle
is given by g(yi). e
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(y = ln x)

Figure 6.11: The region in the first
quadrant enclosed by the graphs of
y = 1, y = ln x, and the x- and y-axes.
There are two representative rectangles
because the bottom curve changes.

As we saw earlier in the term with integration along the x-axis, since g is contin-
uous, the exact area of the region is given by

Area = lim
n→∞

n

∑
i=1

g(yi)∆y =
∫ d

c
g(y) dy.

In our particular case, the interval [c, d] = [0, 1] along the y-axis. The function
g(y) = ey. So the area of the region is in Figure 6.11 (or equivalently 6.10) is

Area =
∫ d

c
g(y) dy =

∫ 1

0
ey dy = ey

∣∣∣∣1
0

= e− 1.
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