
The Fundamental Theorems of Calculus

The Fundamental Theorem of Calculus, Part II

Recall the Take-home Message we mentioned earlier. Example 1.0.10 points out that
even though the definite integral ‘solves’ the area problem, we must still be able
to evaluate the Riemann sums involved. If the region is not a familiar one and we
can’t determine

lim
all ∆xk → 0

n

∑
k=1

f (ck)∆xk,

then we are stuck in trying to evaluate
∫ b

a
f (x) dx. In other words, we must find

another method to evaluate definite integrals. We now make the connection between
antiderivatives and definite integrals. To do this, we will need to use the Mean
Value Theorem in the following form:

THEOREM 1.7 (MVT: The Mean Value Theorem). Assume that

1. F is continuous on the closed interval [xk−1, xk];

2. F is differentiable on the open interval (xk−1, xk);

Then there is some point ck between xk−1 and xk so that

F′(ck) =
F(xk)− F(xk−1)

xk − xk−1
.

This is equivalent to saying F(xk)− F(xk−1) = F′(ck) · (xk − xk−1). Or using the notation of
Riemann sums,

F(xk)− F(xk−1) = F′(ck)∆xk.

THEOREM 1.8 (FTC Part II). Assume that f is continuous on [a, b] and that F is an antideriva-
tive of f on [a, b]. Then Note: We will cover what your text calls

Part I of the FTC shortly.
Recall: F is an antiderivative of f

means that F′ = f on [a, b].

∫ b

a
f (x) dx = F(x)

∣∣∣b
a
= F(b)− F(a).

Before we do the proof, let’s look at an example so you can appreciate what this
theorem says.

EXAMPLE 1.0.16. Let f (x) = x2 on [0, 2]. An antiderivative is F(x) = 1
3 x3. So Theorem 1.8

says ∫ 2

0
x2 dx =

1
3

x3
∣∣∣2
0
=

1
3
(2)3 − 1

3
(0)3 =

8
3

.

Wow! That’s a heck of a lot simpler than doing a limit of Riemann sums. Now to ‘pay’
for this convenience, we need to spend a few minutes working through the proof of the
theorem. But it will pay big dividends.

Proof. Use a regular partition {x0, x1, . . . , xn} of [a, b] into n equal-width subinter-
vals. So xk − xk−1 = ∆x. Now F is an antiderivative of f means that F′ = f . There-
fore F is differentiable (and hence continuous) on [a, b] and each of its subintervals



math 131 the fundamental theorem of calculus, part ii 19

[xk−1, xk]. So the MVT (Theorem 1.7) applies to each subinterval, as indicated be-
low. Then add the results:

On [x0, x1]: F(x1)− F(x0) = F′(c1)∆x = f (c1)∆x

On [x1, x2]: F(x2)− F(x1) = F′(c2)∆x = f (c2)∆x

On [x2, x3]: F(x3)− F(x2) = F′(c3)∆x = f (c3)∆x
...

...
...

...
...

On [xn−2, xn−1]: F(xn−1)− F(xn−2) = F′(cn−1)∆x = f (cn−1)∆x

On [xn−1, xn]: F(xn)− F(xn−1) = F′(cn)∆x = f (cn)∆x

F(xn)− F(x0) =
n

∑
k=1

f (ck)∆x

We see that the sum in the first column ‘telescopes’ because all of the terms
cancel except the last and first. Since x0 = a and xn = b, we can rewrite equation ()
as

F(b)− F(a) =
n

∑
k=1

f (ck)∆x.

Taking the limit of both sides

lim
n→∞

(F(b)− F(a)) = lim
n→∞

(
n

∑
k=1

f (ck)∆x

)

and using the fact that f is continuous so it is integrable (Theorem 1.3), we get

F(b)− F(a) =
∫ b

a
f (x) dx.

Amazing!

EXAMPLE 1.0.17. Find the area under f (x) = −x2 + 4x− 3 on [1, 3].

SOLUTION. We did this with Riemann sums in Example 1.0.4 (see Figure 1.18). But
now it is easy using FTC II and antiderivatives

Area =
∫ 3

1
−x2 + 4x− 3 dx = − x3

3
+ 2x2 − 3x

∣∣∣3
1
= (−9 + 18− 9)−

(
−1

3
+ 2− 3

)
=

4
3

,

which is the answer we got earlier after an entire page of calculations!

EXAMPLE 1.0.18. Recall that in Example 1.0.10 we were unable evaluate
∫ π

0 sin x dx because
we could not simplify the corresponding Riemann sum. Now, however, using FTC II∫ π

0
sin x dx = − cos x

∣∣∣π
0
= − cos π − (− cos 0) = 1 + 1 = 2.

Further, ∫ 2π

0
sin x dx = − cos x

∣∣∣2π

0
= − cos 2π − (− cos 0) = −1 + 1 = 0

just as we saw in Example 1.0.9 and Figure 1.26.

EXAMPLE 1.0.19. Evaluate
∫ 2

0
e4x dx. Using FTC II

∫ 2

0
e4x dx =

1
4

e4x
∣∣∣2
0
=

1
4

e8 − 1
4

e0 =
1
4

(
e8 − 1

)
.

EXAMPLE 1.0.20. Evaluate
∫ 9

1

√
3x dx. Using FTC II

∫ 12

3

√
3x dx =

1
3
· 2

3
· (3x)3/2

∣∣∣12

1
=

2
9
(6− 3) =

2
3

.
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EXAMPLE 1.0.21. Evaluate
∫ 2

1

4x2 + 1
x

dx. Using FTC II

∫ 2

1

4x2 + 1
x

dx =
∫ 2

1
4x +

1
x

dx = 2x2 + ln |x|
∣∣∣2
1
= (8 + ln 2)− (2 + 0) = 6 + ln 2.

EXAMPLE 1.0.22. Return to the unit semi-circle problem: Evaluate
∫ 1

−1

√
1− x2 dx. Since the

region is a unit semi-circle, we know∫ 1

−1

√
1− x2 dx =

π

2
.
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Figure 1.34: The area between f (x) =√
1− x2 and the x-axis is a semi-circle

above the axis.

However, we still do not know an antiderivative of
√

1− x2. This highlights the hypoth-
esis in FTC II. You must know an anti-derivative F of f to be able to use the theorem. Later
in the term we will spend a fair amount of time on different techniques of antidifferentia-
tion. In this way, FTC II becomes truly useful. In the process we will find an antiderivative
of f (x) =

√
1− x2.

EXAMPLE 1.0.23 (Net Area vs. Total Area). Let f (x) = x3 − 3x2 on [0, 4].

(1) Find the net area between f and the x-axis.

(2) Find the total area enclosed by f and the x-axis (this means all regions count as posi-
tive area).

SOLUTION. (1) To determine the net area we just evaluate
∫ 4

0
x3 − 3x2 dx. Applying

FTC II, we find∫ 4

0
x3 − 3x2 dx =

x4

4
− x3

∣∣∣4
0
= (64− 64)− (0− 0) = 0.

In other words, the net area is 0, so the areas above and below the x-axis must
exactly cancel each other out.
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Figure 1.35: The areas between f (x) =
x3 − 3x2 the x-axis on [0, 4] above and
below the axis cancel each other.

(2) To determine the total area enclosed, we need to know where f (x) is positive
and where it is negative.

x3 − 3x2 = x2(x− 3) = 0⇒ x = 0, 3.

The number line to the right shows that x3 − 3x2 ≤ 0 on [0, 3] and x3 − 3x2 ≥ 0
on [3, 4]. We can now find the total area in a couple of different ways. The

0 3

x2(x− 3)
−−− −−− +++0 0

simplest conceptually is to split the interval into two pieces, changing the sign
of the first piece, since the net area is negative there.

Total Area = −
∫ 3

0
x3 − 3x2 dx +

∫ 4

3
x3 − 3x2 dx

= −
[

x4

4
− x3

∣∣∣3
0

]
+

[
x4

4
− x3

∣∣∣4
3

]

=

[(
81
4
− 27

)
− (0− 0)

]
+

[
(64− 64)−

(
81
4
− 27

)]
=

27
2

.

A second way of conceptualizing the problem is to change the function to
| f (x) = |x3 − 3x2| which is always non-negative. Our earlier work determining
where f was positive and negative shows that
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Figure 1.36: The graph of | f (x)| =
|x3 − 3x2|. Compare to Figure 1.35.

|x3 − 3x2| =
{

x3 − 3x2, if x ≥ 3 ,

−x3 + 3x2 x ≤ 3.

So

Total Area = −
∫ 4

0
|x3 − 3x2| dx =

∫ 3

0
−x3 + 3x2 dx +

∫ 4

3
x3 − 3x2 dx

which is equivalent to the first method. The choice is yours. In either case, to
find the total area, you must first determine where the integrand f (x) is positive
and where it is negative.
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EXAMPLE 1.0.24. Evaluate
∫ 2

0
x3 − 2x dx. Applying FTC II, we find

∫ 2

0
x3 − 2x dx =

x4

4
− x2

∣∣∣2
0
= (4− 4)− (0− 0) = 0.

In other words, the net area is 0, so the areas above and below the x-axis must cancel each
other out.
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Figure 1.37: The areas enclosed by
f (x) = x3 − 2x above and below the
x-axis on [0, 2] cancel each other.

EXAMPLE 1.0.25. Evaluate
∫ 3

−3
|2x + 2| dx.

SOLUTION. Take a look at the graph of the function. We don’t have an antiderivative
of f (x) = |2x + 2| on [−3, 3]. However,

|2x + 2| =
{

2x + 2 if x ≥ −1,

−2x− 2 if x < −1.

Now we can use the additivity of the definite integral (Theorem 1.4) and split the
integral into two pieces and apply FTC II.
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Figure 1.38: The area enclosed by
f (x) = |2x + 2| on [−3, 3] is split into
two pieces.

∫ 3

−3
|2x + 2| dx =

∫ −1

−3
−2x− 2 dx +

∫ 3

−1
2x + 2 dx

= −x2 − 2x
∣∣∣−1

−3
+ x2 + 2x

∣∣∣3
−1

= [(−1 + 2)− (−9 + 6)] + [(9 + 6)− (1− 2)

= 20.

1.1 The FTC and Riemann Sums. An Application of Definite Integrals: Net
Distance Travelled

In the next few sections (and the next few chapters) we will see several important
applications of definite integrals. When first taking calculus it is easy to confuse
the integration (with its Riemann sums) process with simple ‘antidifferentiation.’
While the First Fundamental Theorem connects these two, they are not the same
thing. Most important, though, the determination of many quantities can be ap-
proximated (interpreted) as Riemann sums and hence evaluated as definite in-
tegrals even though it is not obvious at the outset that antidifferention should be
involved. The Riemann sum part turns out to be critical. Here’s an example of
what I mean.

Suppose we know that the velocity of an object traveling along a line (think car
on a straight highway) is given by a continuous function v(t), where t represents
time on the interval [a, b]. How might we determine the net distance the object has
travelled? Well, we know that if the velocity were constant, then

distance = rate× time.

Observe: Distance has been expressed as product, much the way we assumed
earlier that the area of a rectangle could be expressed as a product:

area of a rectangle = height× base.

We can extend this analogy to Riemann sums and area under curves. While the
velocity is not constant on long intervals since the velocity is continuous it is nearly
constant on short time intervals. So divide the time interval using a regular partition
{to, t1, t2, . . . , tn} of n subintervals of length ∆t. Next, pick any point in the kth
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subinterval (we might as well choose the right-hand endpoint tk for convenience)
and evaluate the velocity v(tk) there. Then the distance traveled during the kth
time interval approximated as

distance = rate× time ≈ v(tk)× ∆t.

Since the net distance travelled is the sum of the distances traveled on each subin-
terval which is approximately

Net Distance ≈
n

∑
k=1

v(tk)× ∆t.

The approximation is improved by letting n get large and taking a limit.

Net Distance = lim
n→∞

n

∑
k=1

v(tk)× ∆t =
∫ b

a
v(t) dt. (1.8)

Since v was assumed to be continuous, then by Theorem 1.3 we know that the limit
exists and can be evaluated as a definite integral using antidifferentiation assuming
we know an appropriate antiderivative. Finally, think about how we interpreted
definite integrals geometrically: as (net) area under a curve. What we have just
shown is that the net distance travelled over the time interval [a, b] is just the net
area under the velocity curve. That’s not obvious at first. But being able to

What’s your point? The key point here is that we were able to use a ‘divide and
conquer’ process to determine the velocity. Let’s list it as a series of steps.

• We subdivided the quantity into small bits,

• and we were able to approximate the each bit as a product.

• When we reassembled (summed) the bits, we found we had a Riemann sum.

• Once we had a Riemann sum we could take a limit as the number of bits got
large.

• The limit was a definite integral

• which we could evaluate easily (if we know an antiderivative) using the First
Fundamental Theorem of Calculus.

We will use this process repeatedly over the next few weeks. Look for it in other
courses. What quantities do you know are ‘products’? What about the amount
of electricity used in your home? If you know the flow rate of electricity into your
house (go look at your electric meter spinning around), then the amount of electric-
ity consumed can be computed as an integral, just as we did with velocity (rate)
and distance.

EXAMPLE 1.1.1. Ok, we better do one example. If the velocity of an object moving along a
straight line is given by v(t) = 2t + 3 sin t m/s on the interval [0, π]. Find the net distance
travelled.

SOLUTION. Ok, we just need to use (1.8).

Net Distance =
∫ b

a
v(t) dt =

∫ π

0
2t + 3 sin t dt

= t2 − 3 cos t
∣∣∣∣π
0
= (π2 + 3)− (0− 3) = π2 + 6 m.

YOU TRY IT 1.10. If the velocity of an object moving along a straight line is given by v(t) =
1
t +
√

t m/s on the interval [1, 4]. Find the net distance travelled. (Answer: ln 4− 14
3 m.)


