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1.2 Accumulation Functions: The Definite Integral as a Function

When we compute a definite integral [ Hb f(x) dx we get a number which we may
interpret as the net area between f and the x-axis. If we take this idea and let the
upper limit vary, then we can define a so-called ‘accumulation function.”
Let f(x) be continuous (so it is integrable) on [a,b]. For any number x in [a, D]
define
A(x) = 'net area between f and the x-axis from a to x’

or more precisely, define

\ T

X
A = [ fnat (1.9) a x b
a . ‘. ’
Figure 1.39: Area ‘accumulates” as x
Now A(x) is a complicated function, but it is a function. For each x in [a, b], we moves from a to b.

get an output number, namely | ax f(t)dt. Notice that the variable of integration is
t here. We cannot use x because x represents the right endpoint of the interval of
integration.

Even though A(x) may be complicated notice that if f(t) actually were the
velocity v(t) of an object, then A(x) = [ Hx v(t) dt would represent the displacement
of the object. More precisely, A(x) would represent the net change in the position
from time 4 to time x. In other words A(x) would be the net distance that had
been traveled. For the moment, let’s take a look a at couple of examples.

EXAMPLE 1.2.1. Let f(t) = 6¢*. Then f is continuous (everywhere) so we can form the
accumulation function

"X 1 X
A :/ e dt =6 ¥ =3(H —1).
0 2 0

Notice that the answer is a function because the variable x is the upper endpoint of the
integral. If necessary, we could evaluate this function for various values of x.

EXAMPLE 1.2.2. Now compare Example 1.2.1 with the following situation. Let f(t) = sin(#?).
Again f is continuous (everywhere) so we can form the accumulation function

X
A(x):/o sin(f2) dt = 2212

Since we don’t know an antiderivative for sin(t?) we can’t proceed any further. We know
(theoretically) that the accumulation function exists, but we can’t determine a formula for
A(x). We are stuck.

However—and amazingly—even when we don’t have a formula for A(x) as in
Example 1.2.2, we can still find the derivative of A(x). Here’s how.

X
Assume that f(t) is continuous on [a,b] and that A(x) = / f(t)dt. Find A’(x).
By definition, !

A'(x) = lim A(x+h) — A(x).
h—0 h
Substituting in the definition of A, we get

A'(x) = tim Jo SO = [ FO)dt

h—0 h

Using the additivity of the integral (Theorem 1.4) this simplifies to (see Figure 1.40).

x+h | ST
fx f(t)dt a x x+h b

h Figure 1.40: A(x +h) — A(x) is the
area of the shaded strip. It is nearly a
rectangle in shape.

A'(x) = lim

h—0
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Now [ h f(t) dt is just the area of a strip between x and x + h. This strip is
nearly a rectangle (see Figure 1.41) of height f(x + 1) and width h. This rectan-
gular approximation becomes better as / gets smaller. The area of the rectangle is
f(x+h) - h. Consequently,

T B

+h b
oy e JXER) ‘ e
Al(x) = }lllir(l) A = }lllir(l)f(x +h). Figure 1.41: A(x +h) — A(x) is ap-
proximately a rectangle (compare the
Finally, because f is continuous, we can evaluate the limit shaded strip to the rectangle) with area
f(x+h)-h

A'(x) = Tim fx+h) = f(x).

Since A(x) is really just [ f(t) dt, another way of writing A’(x) is

= [ o] = e,

Your text calls this the first part of the Fundamental Theorem of Calculus (FTC
I). We won't use it as often as FTC II, but it is useful. It is customary to state the
result more carefully using F(x) instead of Ax).

THEOREM 1.9 (Fundamental Theorem of Calculus, Part I: FTC I). Assume that f is continuous on
an open interval I containing a. For any x in I, define

A(x) = /:f(t) dt.

Then Notice that A’(x) = f(x), not f(t). The
Al(x) = i /x F ] = () variable is now x, the endpoint of the
dx | Ja ’ interval.

Step back for a second and think about what we have just shown. If we in-
tegrate a continuous function f () over an interval [a, x] where we think of the
upper endpoint as variable, then we get a function A(x) whose derivative is is
f(x), even if we can’t figure out what A(x) is! If we return to Example 1.2.2 and let
f(t) = sin(#?). Since f is continuous (everywhere) we can define the new function

Ax) = /Ox sin(#?) dt.

We were unable to figure out a formula for F(x). However, FTC I says A’(x) =
sin(x?). Here are a couple of more examples

d x
EXAMPLE 1.2.3. e { / e’ dt} = ¢* because ¢’ is continuous so FTC I applies. Similarly
J0

X
% [ / \/ﬁdt} = \/m because V% + 1 is continuous so FTC I applies.
J1
d 0
EXAMPLE 1.2.4. This time suppose we have — { / tsint dt} . The problem is that the vari-
X

dx
able is the lower endpoint rather than the upper endpoint of the integral. To apply FTC

I we need to switch the order of the limits. But that changes the sign of the integral (see
Definition 1.5). So we have

d 0 d X
— / tsintdt| = — f/ tsintdt| = —xsinx,
dx X dx 0

because tsint is continuous so FTC I applies.
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There is also a chain rule version of the FTC I when the upper limit of integra-
tion is not just x but a function of x. Suppose for instance someone (me!) gave you

Al

We cannot apply FTC I directly because the upper limit of integration is x

the problem of determining
3

tantdt] .

3, not x.

FTC I requires an x as the upper limit. However, we can make a substitution, like
we sometimes do with the chain rule for derivatives. In general, if u is a function
of x, then composition y = A(u) is also really a function of x and so

dy _dy du
dx  du dx’
du 5 x
In our case, let u = x3 so Fi 3x°. Now if y = / tan t dt, then
0
dy d | °
dy du d u du 3
2= tdt| - — let u =
du dx  du Uo fan } dx etu=x
= tan(u) - % Use FTC with variable u
= tan(x%) - 3x? Substitute back: 1 = x” and 9% = 3x2
So
d |
_ / tantdt| = tan(x3) . 3x2. Answer to YOU TRY IT 1.11 : The largest
dx 0 interval that contains 0 on which tan x°

is defined is ( ¢/ =%, ¢/ % ).

YOU TRY IT 1.11. Ok, stop for a second. In Example 1.2.3, what interval must x lie in?
. .d o 5
EXAMPLE 1.2.5. Put it all together: Determine P / ., cos tdt|.
Jex

Solution. First we reverse the order of the endpoints so the the variable is the
upper endpoint.

d 0 d 65){

-— / cos’tdt| = — —/ cos? tdt

dx | Jesx dx 0
Now we use the chain rule with u = > to obtain
d e d u du
— | = cos“tdt| = — —/ cos® tdt| - — let u = &>
dx [ /0 du { 0 dx

5 du . .

= —cos™(u) - P Use FTC with variable u

= — cos?(e’) - 5e™* Substitute back: 1 = ™ and 4% = 5¢°*
Not too bad!

oS x Answer to YOU TRY IT 1.12: F/(x) =
YOU TRY IT 1.12. Find the derivative of F(x) = / et dt. —(sinx)e®s?.
us
¥4 y=F0)
YOU TRY IT 1.13. Here’s one from your text. The graph of f is shown in Figure 1.42. g4
Define the following two accumulation or net area functions: A(x) = [, f(t)dt and -
F(x) = |, 4x f(t) dt. Evaluate the following net area functions. Area=8 [T
@ A(=2)  ®) F8) () AM4) + g
(d) F(4) () A8) () F(=2) / Gl Kieneil

Figure 1.42: This is the graph of f(t),
for YOU TRY IT 1.13 .

Answer to YOU TRY IT 1.13 : (a) 0; (b)
—9; (c) 25; (d) O; (e) 16; (f) —25.
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YOU TRY IT 1.14. OK, the Fundamental Theorem says that if we let F(x) = ffz f(t)dt, then
F'(x) = f(x). But also remember F(x) is just the net area between f and the x axis on the
interval from —2 to endpoint x. Answer the following questions.

(¢) On what interval(s) is F decreasing? Explain.

(h) At what point(s), if any, does F have a local max? Min?
(i) Does F have any points of inflection? Explain.

(/) On what interval(s) is F concave down?

(k) Is F(0) a positive number or negative? Explain.

YOU TRY IT 1.15. Suppose that [|" g(t)dt = x?Inx. Evaluate g(2) and explain your answer.
Hint: Apply FTC L.

—
i 3

Figure 1.43: This is the graph of F/(x) =
f(x), not F(x).

Answer to YOU TRY IT 1.14 : (a) [—2,1];
(b) . max: x = —0.5, 1. min: x = 1.5; (c)
x = 1; (d) [-2,1]; (e) positive.

Answer to YOU TRY IT 1.15 : g(2) =
4In2+2.
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1.3 An Application of Definite Integrals: Average Value

Here is another simple example of an application of the definite integral which
points out the power of the definition of the integral as a Riemann sum.

Suppose that we want to know the average temperature for February 27, 2003 in
Geneva (see Figure 1.44). How might we find it? Well, we could take the n = 24

Time Temp

hourly temperature recordings, add them together, and then divide by 24 might as

we might do to find any average. Is the average 19.7 as listed in the table? What oo 12
‘average’ is that? ;f)g g
4:00 12
30 7 e e 5:00 11
: : : : : : Figure 1.44: A graph of the temperature 6:00 12
on February 27, 2003 using the data to 7:00 13
25 the right. 8:00 18
9:00 21
10:00 24
11:00 26
12:00 28
13:00 28
14:00 29
15:00 29
16:00 27
17:00 25
18:00 24
s 1900 21
20:00 19
21:00 17
o — — T T | 22:00 18
o 4 8 12 16 20 24 23:00 17
24:00 16
Time
Ave 19.7

The average of 19.7 ‘privileges’ those recordings made on the hour. We could
get a better estimate if we recorded temperatures every half-hour, or every 5 min-
utes, or every minute, or perhaps every second. The more recordings we use, the
better the ‘average.” Let’s generalize the problem. In doing so, we are sometimes
able to see the pattern which will help us solve the particular problem we are in-
terested in.

The Average Value Problem: Let f be a continuous function on the closed interval
[a,b]. Find the average value of f on [a,b].

SOLUTION. We make use of the outline of steps on page 22. But how do we subdi-
vide an average and make it product? As usual, start by dividing [, b] into n equal
subintervals with partition points {xg, x1, ..., x, }. Then, as we suggested above,

(1.10)

Average of f ~ UCIRD () Raiing (CO kilf(Xk) : %

n

The summation looks almost like a Riemann sum except we now have % instead of
Ax. But hold on!

SO
1 _b—a 1 Ax

n n b—a b—a
Substituting this back in equation (1.10) gives

Average of f ~ Y f(xy) - be = ﬁ Y f(xg)Ax. (1.11)
k=1

—a
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Now we do have a Riemann sum in (1.11). We have already remarked that if we let n
increase (take more points in our average), we should get a more accurate approxima-
tion. The best approximation occurs when we take a limit as the number of evaluation
points n — co. In other words

1 & 1

b
Average of f = lim 1f(xk)Ax =5 a/u f(x)dx. (1.12)

n%wb—ak

We know this limit exists and equals the definite integral because f is continuous
(see Theorem 1.3). Having carried out the steps on page 22, we are led to make the
following definition.

DEFINITION 1.6 (Average Value). Assume that f is integrable on [, b]. Then the average value
of f on [a,b] is denoted by f = fave and is defined by

_ b
f:fave:bia/ﬂ f(x)dx

EXAMPLE 1.3.1. Find the average value of f(x) = /x on [0,9].

SOLUTION. Using Definition 1.6

b 9 3
F = foe = g [ 0 dr = o [ V=522 = 227 -0) =2
The average value is shown in Figure 1.45. Think of the original curve as a wave
in a fish tank. The wave settles to the average value of the function. The area of the
rectangle formed using the average value as the height is the same as the area under
the original curve. Notice that there is a point, namely ¢ = 4 at which the height of the
curve is the same as the average value (f(4) = 2).

YOU TRY IT 1.16. Find the average value of f(x) = x2 on [—1,2]. For which values c in the
interval does the average value actually occur?

EXAMPLE 1.3.2. A patient being treated for emphysema is tested with a spirometer to mea-
sure lung capacity. The data show the volume of air in the patient’s lungs during inhalation
is given by V() = 1 — cos (%) pints over the time interval [0,2] seconds. Find the average
volume of air in the his lungs during this period.

SOLUTION. Using Definition 1.6

1 2 it
Average V = m/o 1 —cos (?) dt

—ltfgsin it i
T2 7 2

In Figure 1.46 notice how the area under the curve above the average value balances
out the missing area below the average value and the curve. Notice also that the
average value actually occurs at ¢ =1 (since f(1) = 1).

- %[(270) — (0—0)] =1 pint.

0

YOU TRY IT 1.17. A patient being treated for pulmonary fibrosis is tested with a spirometer
to measure lung capacity. The data show the volume of air in the patient’s lungs during
both the inhalation and exhalation cycles is given by

V(t) =1—cos (%) pints

over the time interval [0, 5] seconds. Find the average volume of air in the his lungs during
this period. At what time(s) does this volume occur?

(S

=N
|
|
|
|
|

I

|

I

0 c=4 9
Figure 1.45: The average value of \/x on

[0,9] is 2. This value actually occurs at
c=4.

Answer to YOU TRY IT 1.16 : The
average value is 1. It occurs at ¢ = 1.

1 —4— — — —

|
o |

|

|

|

-

| |

|

|

|

o 2

Figure 1.46: The average value of
V(t)=1—cos (%) on [0,2]is 1.

Answer to YOU TRY IT 1.17 : 1 pint and
it occurs at ¢ = % and %,
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Figure 1.47: Data (for Boston) from The
Old Farmer’s Almanac for the number
of hours the moon is visible per day

during its 28-d le.
Moonlight uring its 28-day cycle

Hrs

YOU TRY IT 1.18 (Hand in: Challenge). The phases of the moon occur in a regular, predictable
28 day lunar cycle. Data (for Boston) from The Old Farmer’s Almanac indicate that the hours,
v(x), the moon is visible per day over the course of the cycle is v(x) = 2.615cos({gx — 7r) +
12.435, where x is the day of the cycle.

(2) Find the average number of hours the moon is visible per day in Boston using calcu-
lus

(b) Extra Credit: Use your brain to explain why you should have expected this answer!

In Example 1.3.1 and Example 1.3.2 we noted that there were points where the
average value of the function actually occurred. This turns out to always be true as
long as f(x) is continuous.

THEOREM 1.10 (Mean Value Theorem for Integrals: MVTI). If f is continuous on [a, ], then
there’s a point ¢ in [a, b] so that

[ far= ) 0 -a)

In other words

1 b _
£€) = 5= | Fydt =F = fave
Proof. As usual, for x in [a, b], define our accumulation function as
X
Alx) = / £(t) dt.
a

Then by FTC I, A’(x) = f(x). So A(x) is differentiable on [4, b] so it is continuous
there. By the original MVT, there is a point ¢ in [, b] so that

A(b)— A(a) [P — [“ftyde  [PFyde—0 1 b
b—a o b—a a b—a _b—a/ufmdt'

But A’(c) = f(c), so

Al(c) =

1 b =
fle) = — / Fdt=F = fave.
a
O
EXAMPLE 1.3.3. Let f(x) = 2cos(x) on [—7, 5]. Find the point ¢ in [—%, 5] where f(c) =
fuve-
SOLUTION. First notice that 2 cos x is differentiable so it is continuous. So the MVTI
applies. Next we need to determine f = faye. Using Definition 1.6
_ 1 /2 1 /2 1 4
= = 2 dx = —(2si =—2-(-2)]=—.
f = fave 72— (—7/2) Ln/z cosxax 7I( sin x) o 7I[ (—2)] p

29
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So we need to find c in [~ %, ] so that f(c) = f = fave = £. In other words,
f(c) =2cosc =

cosc =

AN~

¢ = arccos (%) ~ +0.8806892354.

YOU TRY IT 1.19. Let f(x) = x> — 1 on [0,3]. Does the MVTI apply to this function? Why? If
so, find the point(s) c in [0,3] so that f(c) = f = fave.

EXAMPLE 1.3.4. Find the average value of f(x) = |x — 3| on [0,5] and determine the points ¢
where the average occurs.

SOLUTION. By Definition 1.6,

_ b .
f:fave:biu/ﬂ f(x)dx:ﬁ/o5|x73|dx

e L 300+ ;00

=13.

Note that we were able to easily evaluate the integral by using the geometry of the the
two triangles.

Since |x — 3| is continuous, the MVTI says there’s a point ¢ in [0, 5] where f(c) =
f = fave. We need

c—3=13 c=43
lc=3]=13 <~ { — {

c—-3=-13

Both points are in the interval.

Answer to YOU TRY IT 1.19 : The MVTI
does apply because f is a polynomial
(continuous). ¢ = /3.

3 F(x) = x|

O 71 T T 1
o 1 2 3 4 5

Figure 1.48: The area under f(x) =
|x — 3| on [0,5] consists of triangles.



