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Type 2: Improper Integrals with Infinite Discontinuities

A second way that function can fail to be integrable in the ordinary sense is that
it may have an infinite discontinuity (vertical asymptote) at some point in the
interval. The simplest cases are when the function has such a discontinuity at an
endpoint of the interval. An obvious example is

Z 4

0

1
x2 dx.

The integrand is not defined at x = 0 and, in fact, the function has a vertical
asymptote there (see Figure 7.4).

4

...................................................................................................................................................................................................................................................................

f (x) = 1
x2

Figure 7.4: The integral f (x) = 1
x2 on

the interval [0, 4] is improper because
f (x) has a vertical asymptote at x = 0.

As with integrals on infinite intervals, limits come to the rescue and allow us to
define a second type of improper integral.

DEFINITION 7.2 (Improper Integrals with Infinite Discontinuities). Consider the following three
types of infinite discontinuities.

(a) If f is continuous on (a, b] and lim
x!a+

f (x) = ±•, then

Z b

a
f (x) dx = lim

c!a+

Z b

c
f (x) dx

provided the limit exists. If limit exists, we say the improper integral converges.
Otherwise it diverges.

(b) If f is continuous on [a, b) and lim
x!b�

f (x) = ±•, then

Z b

a
f (x) dx = lim

c!b�

Z c

a
f (x) dx

provided the limit exists.

(c) If f is continuous on [a, b] except at some point p between a and b where it has an
infinite discontinuity, then we define

Z b

a
f (x) dx =

Z p

a
f (x) dx +

Z c

p
f (x) dx,

provided both integrals converge.

Three Simple Examples

EXAMPLE 7.8. Does
Z 4

0

1
x2 dx exist (converge)?

SOLUTION. As we saw above, this function has a vertical asymptote at x = 0, but is
otherwise continuous on the interval (0, 4]. So we apply Definition 7.2.

Z 4

0

1
x2 dx = lim

c!0+

Z 4

c

1
x2 dx = lim

c!0+
� 1

x

���
4

c
= lim

c!0+


�1

4
+

1
c

�
= +•.

The integral diverges.

EXAMPLE 7.9. Does
Z 4

0

1p
4 � x

dx exist (converge)?

SOLUTION. This time the function has a vertical asymptote at x = 4, but is other-
wise continuous on the interval [0, 4). So we apply Definition 7.2 (and use a mini-
substitution to do the integral).4 4 Use u = 4 � x and �du = dx.
Z 4

0

1p
4 � x

dx = lim
c!4�

Z c

0
(4 � x)�1/2 dx = lim

c!4�
�2(4 � x)1/2

���
c

0

= lim
c!4�

h
�2(4 � c)1/2 + 4

i
= 0 + 4 = 4.

The integral converges.
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EXAMPLE 7.10. Does
Z p/2

0
tan x dx exist (converge)?

SOLUTION. Be careful. Remember that the tangent function has a vertical asymptote
at x = p

2 , but is otherwise continuous on the interval [0, p
2 ). So

Z p/2

0
tan x dx = lim

c! p
2
�

Z c

0
tan x dx = lim

c! p
2
�

ln | sec x|
���
c

0

= lim
c! p

2
�
[ln | sec(c)|� 1] = +•.

Remember the that secant function goes to +• as c ! p
2
�. And since the natural log

function increases without bound as x ! +•, the entire expression goes to +•. So
the integral diverges.

Combined with Other Techniques

Of course improper integrals can occur when more complicated integrals arise.

EXAMPLE 7.11. Does
Z 9

3

1p
x2 � 9

dx exist (converge)?

SOLUTION. This time the function has a vertical asymptote at x = 3, but is otherwise
continuous on the interval (3, 9]. So we will eventually apply Definition 7.2. But first
it makes sense to do the integration without limits because this involves a triangle
substitution.

...................................................................................
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
..................................................................................................................................

3

x

q

p
x2 � 9

x = 3 sec q

dx = 3 sec q tan q dq
p

x2 � 9 = 3 tan q

Now proceed with the substitution:
Z 1p

x2 � 9
dx =

Z 1
3 tan q

· 3 sec q tan q dq =
Z

sec q dq = ln | sec q + tan q| dq

= ln

�����
x
3
+

p
x2 � 9

3

����� .

So applying Definition 7.2

Z 9

3

1p
x2 � 9

dx = lim
c!3+

Z 9

c

1p
x2 � 9

dx = lim
c!3+

ln

�����
x
3
+

p
x2 � 9

3

�����

���
9

c

= lim
c!3+

"
ln

�����
9
3
+

p
81 � 9

3

������ ln

�����
c
3
+

p
t2 � 9

3

�����

#

= ln(3 + 2
p

2)� ln(1 + 0)

= ln(3 + 2
p

2).

The integral converges. Whew!

EXAMPLE 7.12. Evaluate
Z 1

0
3x2 ln x dx, if it converges.

SOLUTION. This time the function has a vertical asymptote at x = 0 where the natural
log becomes undefined, but is otherwise continuous on the interval (0, 1]. So we will
eventually apply Definition 7.2. But first it makes sense to do the integration without
limits because this involves an integration by parts.

Let u = ln x so du = 1
x dx and dv = 3x2 dx, so v =

R
dv =

R
3x2 dx = x3. Now

proceed with the integration:
Z

3x2 ln x dx = x3 ln x �
Z

x3 · 1
x

dx = x3 ln x �
Z

x2 dx = x3 ln x � x3

3
.
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So applying Definition 7.2

Z 1

0
3x2 ln x dx = lim

c!0+

Z 1

c
3x2 ln x dx = lim

c!0+
x3 ln x � x3

3

���
1

c

= lim
c!0+

✓
0 � 1

3

◆
�

✓
t3 ln c � t

3

◆�

= lim
c!0+

✓
c
3
� 1

3

◆
� lim

c!0+

⇣
c3 ln c

⌘

= �1
3
� lim

c!0+
ln c

1
c3

l’Ho
= �1

3
� lim

c!0+

1
c

� 3
c4

= �1
3
+ lim

c!0+
c3

3

= �1
3

.

The integral converges. What fun!

EXAMPLE 7.13. What can you say about
Z 3

1

3
x2 � 3x

dx?

SOLUTION. This time the function has a vertical asymptote at x = 3 where the
x2 � 3x becomes undefined, but is otherwise continuous on the interval [1, 3). We will
eventually apply Definition 7.2. It makes sense to do the integration (partial fractions)
first without limits because this involves. The degree of the numerator is less than the
degree of the denominator (0 < 2) and the denominator factors into distinct linear
factors: x(x � 3).

3
x2 � 3x

=
3

x(x � 3)
=

A
x
+

B
x � 3

=
Ax � 3A + Bx

x2 � 3x
.

Comparing the numerators of the first and last functions and solving for A and B
gives

x’s: 0 = A + B
constants: 3 = �3A ) A = �1, B = 1

Consequently,
Z 3

x2 � 3x
dx =

Z ✓
1

x � 3
� 1

x

◆
dx = ln |x � 3|� ln |x|+ c = ln

����
x � 3

x

����+ c.

Notice that how we have simplified the answer! So applying Definition 7.2

Z 3

1

3
x2 � 3x

dx = lim
c!3+

Z c

1

3
x2 � 3x

dx = lim
c!3+

ln
����

x � 3
x

����

����
c

1

= lim
c!3+

2

4ln
����
c � 3

c

����
%ln 0+

� ln
����
3 � 1

1

����

3

5

= �•.

The integral diverges.

Sometimes you need to be extra careful with improper integrals, as this next
example illustrates.

EXAMPLE 7.14. What can you say about
Z 6

1

1
x � 4

dx?

SOLUTION. This time the function has a vertical asymptote at x = 4 where the
denominator is 0, but is otherwise continuous on the intervals [1, 4) and (4, 6] (see
Figure 7.5).

1 4 6

...........................................................................................................................................................................................................................................................................

.....................................................................................................................................................................................................................................

f (x) = 1
x�4

Figure 7.5: f (x) = 1
x�4 on the interval

[1, 6] is improper because f (x) has a
vertical asymptote at x = 4.
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We must apply part (c) of Definition 7.2 and split the integral into two pieces at 4.
Z 6

1

1
x � 4

dx = lim
c!4�

Z c

1

1
x � 4

dx + lim
c!4+

Z 6

c

1
x � 4

dx.

We need to determine each integral separately

lim
c!4�

Z c

1

1
x � 4

dx = lim
c!4�

ln |x � 4|
���
c

1
= lim

c!4�
ln |c � 4|+ ln 3 = �•.

Consequently, the entire integral
Z 6

1

1
x � 4

dx diverges. We do not need to evaluate

lim
c!4+

Z 6

c

1
x � 4

dx.

So what was so hard about this? Well, it is easy to get this wrong because you
might have missed the vertical asymptote at x = 4 and done the integration as fol-
lows: Z 6

1

1
x � 4

dx = ln |x � 4|
���
6

1
= ln 2 � ln 3 = ln 2

3 .

If so, you would have missed the fact the integral was improper and actually diverges.
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7.7 Problems

1. Determine these three integrals; for one use a theorem to make it quick.

(a)
Z •

0

xp
1 + x2

dx (b)
Z •

1

1
x4 dx (c)

Z 1

0

2
x2 � 2x

dx

2. Evaluate each improper integral; determine whether it converges or not. Reuse some part
of your work in (a) for (f).

(a)
Z •

2

2
x2 � 1

dx (b)
Z •

0

2x
3
p

1 + x2
dx (c)

Z •

0

1
(1 + x2)3/2 dx

(d)
Z 1

0

ln x
x

dx (e)
Z 5

4

xp
x � 4

dx (f )
Z 1

0

2
x2 � 1

dx

3. Evaluate each improper integral; determine whether it converges or not.

(a)
Z 0

�•
xe2x dx (b)

Z •

0

e�x

1 + e�x dx (c)
Z •

2

1
(x � 1)2 dx

(d)
Z 2

0

1p
2 � x

dx (e)
Z 2

0

1p
4 � x2

dx (f )
Z 4

2

1p
x2 � 4

dx

4. Use #3(e) to find the average value of 1p
4�x2 on [0, 2). (Answer: p/4).

5. This is a beautiful problem which asks you to use many of the ideas of the course, in-
cluding l’Hopital’s rule and improper integrals. Consider the infinitely deep well formed
by rotating the region bounded by the curves curve y = ln x, the y-axis, and the x-axis in
the fourth quadrant. it is filled with water (density D = 62.5 lbs/ft3). How much work
W is done in emptying the well (raising water to ground level H = 0.). The formula for
work is

W = D
Z b

a
(H � y)p( f (y))2 dy

where a and b the depths of the bottom and top of the well and x = f (y) represents
the equation of the curve as a function of x. Hint: Use your work in #3(a). [Answer:
15.625p ft-lbs]

Some Answers

2. (a) limb!• ln b�1
b+1 � ln 1

3 = ln 1 + ln 3 = ln 3

(b) limb!•
3
2 (1 + b2)2/3 � 3 = +•. Diverges

(c) limb!•
bp

1+b2 = limb!•
b

b
q

1
b2 +1

= 1

(d) lima!0+
1
2 [(ln 1)2 � (ln a)2] = �•. Diverges.

(e) 8 2
3 .

(f ) limb!1� ln | b�1
b+1 |� ln 1 = �•. Diverges.

3. You may need l’Hôpital’s rule.

(a) 3 (b) �• Diverges (c) • Diverges

(d) 1 (e) 0 (f ) 1 (g)
1p

e

4. (a) � 1
4 .

(b) limb!• � ln(1 + 1
eb ) + ln 2 = ln 2

(c) limb!• �( 1
1�b )� (�1) = 1

(d) limb!2� �2
p
(2 � b) + 2

p
2 = 2

p
2.

(e) limb!2� arcsin b
2 � arcsin 0 = p

2 � 0 = p
2

(f ) Triangle: ln(2 +
p

3).


