
Power Series

So far we have looked at series of numbers such as
∞

∑
n=1

1
n

or
∞

∑
n=1

n!
10n . While these

are interesting, as calculus students, we are primarily interested in functions.
Among the simplest functions are polynomials such as

p1(x) = 1 + x

p2(x) = 1 + x +
x2

2!

p3(x) = 1 + x +
x2

2!
+

x3

3!

What would happen if we looked at a polynomial of infinite degree, say

p(x) = 1 + x +
x2

2!
+

x3

3!
+ · · ·+ xn

n!
+ · · ·

or expressed as a series

p(x) =
∞

∑
n=0

xn

n!
.

Each number x can ’plugged in’ the series and we can determine whether p(x)
exists (the series converges for this x) or does not exist (the series diverges). If we
do this for each and every x, we can determine the domain of p(x). We will soon
see that this can be done very efficiently.

The ultimate goal is to represent familiar functions like sin x and ex as ’infinite
degree’ polynomials so that the values of these functions can be estimated quickly.
This is how your calculator works!

DEFINITION 15.1 (Power Series). A power series in the variable x is a infinite series of the
form

∞

∑
n=0

cnxn = c0 + c1x + c2x2 + · · ·+ cnxn + · · · .

More generally, if a is some constant, then

∞

∑
n=0

cn(x− a)n = c0 + c1(x− a) + c2(x− a)2 + · · ·

is called a power series centered at a.
CONVENTION: To simplify notation, in the context of power series we define x0 = 1 and
(x− a)0 = 1 for any value of x including x = 0.

EXAMPLE 15.1. Here are three simple examples:

1.
∞

∑
n=1

xn

n!
= 1 + x +

x2

2!
+

x3

3!
+ · · · is a power series (centered at 0).
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2.
∞

∑
n=1

2n(x − 1)n = 1 + 2(x − 1) + 4(x − 1)2 + 8(x − 1)3 + · · · is a power series

centered at 1.

3.
∞

∑
n=1

(−1)n(x + 2)n = 1 − (x + 2) + (x + 2)2 − (x + 2)3 + · · · is a power series

centered at −2.

Radius and Interval of Convergence

How do we determine where a power series converges? Do we have to check at
every x? Notice that if we think of a power series as a function,

f (x) =
∞

∑
n=0

cn(x− a)n,

there is at least one point x where the series must converge. Which?
At the center a the series will converge because (remember our convention)

f (a) =
∞

∑
n=0

cn(a− a)n =
∞

∑
n=0

cn(0)n = c0(1) + 0 + 0 + · · · = c0.

So the center a of the power series is always in the domain of f .
The main theorem below tells us that the domain of a power series can only

have three basic forms.

THEOREM 15.1 (Radius of Convergence). For a power series
∞

∑
n=0

cn(x − a)n centered at a, ex-

actly one of the following is true:

1. The series converges only at a.

2. There is a number R > 0 so that the series converges absolutely for |x − a| < R and
diverges for |x− a| > R. (See NOTE below.)

3. The series converges for all x.

R is called the radius of convergence. If the series converges only at a, we say
that R = 0. If the series converges at all values of x, we say that R = ∞.

The set of all values of x for which the series converges is called the interval of
convergence.

NOTE: In case (2) the power series may converge at both endpoints, either end-
point, or neither endpoint. You have to check the convergence at the endpoints
separately. Here’s what the intervals of convergence can look like:

Case 1: R = 0
a•

Case 2: R 6= 0, ∞
a− R a a + R

(a− R, a + R)

( )•
a− R a a + R

[a− R, a + R)

[ )•

a− R a a + R

(a− R, a + R]

( ]•
a− R a a + R

[a− R, a + R]

[ ]•

Case 3: R = ∞
a
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EXAMPLE 15.2. Determine the radius and interval of convergence for the power series
∞

∑
n=0

n!xn

2n .

SOLUTION. We know that the series converges at its center a = 0. The standard
methodology is to use the ratio test or the root test on the absolute values of the
terms of the series. If we denote the nth term of the series by cn, then for any x 6= 0

lim
n→∞

∣∣∣∣ cn+1
cn

∣∣∣∣ = lim
n→∞

∣∣∣∣∣∣
(n+1)!xn+1

2n+1

n!xn

2n

∣∣∣∣∣∣ = lim
n→∞

∣∣∣∣ (n + 1)x
2

∣∣∣∣ = |x| lim
n→∞

(n + 1)
2

= ∞.

By the ratio test, the series diverges for any |x| > 0. That is, it converges only at its
a = 0
•

center a = 0 and the radius of convergence is R = 0.

EXAMPLE 15.3. Determine the radius and interval of convergence for the power series
∞

∑
n=0

(x− 2)n

3n .

SOLUTION. We know that the series converges at its center a = 2. This time for any
x 6= 2 (using reciprocals)

lim
n→∞

∣∣∣∣ cn+1
cn

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ (x− 2)n+1

3n+1 · 3n

(x− 2)n

∣∣∣∣∣ = lim
n→∞

∣∣∣∣ x− 2
3

∣∣∣∣ = |x− 2|
3

.

By the ratio test, the series converges if

|x− 2|
3

< 1 ⇐⇒ |x− 2| < 3.

It also diverges when |x− 2| > 3. The radius of convergence is R = 3. What about the
endpoints a− R = 2− 3 = −1 and a + R = 2 + 3 = 5?

For x = −1: This means we set x = −1 in the original series. We get

∞

∑
n=0

(−1− 2)n

3n =
∞

∑
n=0

(−1)n

which diverges by the geometric series test (|r| = 1).
For x = 5: This means we set x = 5 in the original series. We get

∞

∑
n=0

(5− 2)n

3n =
∞

∑
n=0

(1)n

which also diverges by the geometric series test (|r| = 1).
−1 a = 2 5

Interval of convergence: (−1, 5)

( )•
So the interval of convergence is (−1, 5) and does not include either endpoint.

EXAMPLE 15.4. Determine the radius and interval of convergence for the power series
∞

∑
n=1

(−1)nxn

n
.

SOLUTION. We know that the series converges at its center a = 0. This time for any
x 6= 0

lim
n→∞

∣∣∣∣ cn+1
cn

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ (−1)n+1xn+1

n + 1
· n
(−1)nxn

∣∣∣∣∣ = lim
n→∞

∣∣∣∣ n
n + 1

· x
∣∣∣∣ = |x|.

By the ratio test, the series converges if |x| < 1 and diverges when |x| > 1. The radius
of convergence is R = 1. What about the endpoints a − R = 0 − 1 = −1 and
a + R = 0 + 1 = 1?

For x = −1: We get
∞

∑
n=1

(−1)n(−1)n

n
=

∞

∑
n=1

1
n

which diverges by the p-series test (p = 1).



math 131 power series, part i 4

For x = 1: We get
∞

∑
n=1

(−1)n · 1n

n
=

∞

∑
n=1

(−1)n

n
.

This is the alternating harmonic series which we have previously seen converges by
the alternating series test. (This should be familiar. Try it!)

−1 a = 0 1

Interval of convergence: (−1, 1]

( ]•
The interval of convergence is (−1, 1] and includes just one of the endpoints.

EXAMPLE 15.5. Determine the radius and interval of convergence for the power series
∞

∑
n=0

(2x)n

n2 .

SOLUTION. We know that the series converges at its center a = 0. This time for any
x 6= 0

lim
n→∞

∣∣∣∣ cn+1
cn

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ (2x)n+1

(n + 1)2 ·
n2

(2x)n

∣∣∣∣∣ = lim
n→∞

∣∣∣∣ 2n2x
(n + 1)2

∣∣∣∣ = lim
n→∞

∣∣∣∣∣
(

n
n + 1

)2
· 2x

∣∣∣∣∣ = 2|x|.

By the ratio test, the series converges if 2|x| < 1 ⇐⇒ |x| < 1
2 and diverges when

|x| > 1
2 . The radius of convergence is R = 1

2 . What about the endpoints − 1
2 and 1

2 ?
For x = − 1

2 : We get

∞

∑
n=0

(2(− 1
2 ))

n

n2 =
∞

∑
n=0

(−1)n

n2

which converges by the alternating series test (an easy check!).
For x = 1

2 : We get
∞

∑
n=0

(2( 1
2 ))

n

n2 =
∞

∑
n=0

1
n2

which converges by the p-series test (p = 2 > 1).
−1/2 a = 0 1/2

Interval of convergence: [− 1
2 , 1

2 ]

[ ]•
The interval of convergence is [− 1

2 , 1
2 ] and includes both of the endpoints.

EXAMPLE 15.6. Determine the radius and interval of convergence for the power series
∞

∑
n=0

xn

n!
.

SOLUTION. We know that the series converges at its center a = 0. This time for any
x 6= 0

lim
n→∞

∣∣∣∣ cn+1
cn

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ xn+1

(n + 1)!
· n!

xn

∣∣∣∣∣ = lim
n→∞

∣∣∣∣ x
n + 1

∣∣∣∣ = 0 < 1.

By the ratio test, the series converges for all x. The radius of convergence is R = ∞.
There are no endpoints to check.

0

Interval of convergence: (−∞, ∞)

The interval of convergence is (−∞, ∞).

EXAMPLE 15.7. Determine the radius and interval of convergence for the power series
∞

∑
n=0

xn

3n2 + 1
.

SOLUTION. We know that the series converges at its center a = 0. This time for any
x 6= 0

lim
n→∞

∣∣∣∣ cn+1
cn

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ xn+1

3(n + 1)2 + 1
· 3n2 + 1

xn

∣∣∣∣∣ = lim
n→∞

∣∣∣∣ 3n2 + 1
3n2 + 6n + 4

· x
∣∣∣∣ HPwrs

= lim
n→∞

∣∣∣∣3n2

3n2 · x
∣∣∣∣ = |x|.

By the ratio test, the series converges if |x| < 1 and diverges when |x| > 1. The radius
of convergence is R = 1. What about the endpoints a − R = 0 − 1 = −1 and
a + R = 0 + 1 = 1?

For x = 1: We get
∞

∑
n=0

1
3n2 + 1

. Since 0 < 1
3n2+1 < 1

n2 and since
∞

∑
n=0

1
n2 converges

(p-series, p = 2 > 1), then by direct comparison
∞

∑
n=0

1
3n2 + 1

converges.
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For x = −1: We get
∞

∑
n=0

(−1)n

3n2 + 1
. However, we just saw that

∞

∑
n=0

∣∣∣∣ (−1)n

3n2 + 1

∣∣∣∣ =

∞

∑
n=0

1
3n2 + 1

converges. Hence,
∞

∑
n=0

(−1)n

3n2 + 1
converges by the absolute convergence

test.
−1 a = 0 1

Interval of convergence: [−1, 1]

[ ]•
The interval of convergence is [−1, 1] and includes both endpoints.

EXAMPLE 15.8. Determine the radius and interval of convergence for the power series
∞

∑
n=0

4nx2n

n + 1
.

SOLUTION. We know that the series converges at its center a = 0. For any x 6= 0

lim
n→∞

∣∣∣∣ cn+1
cn

∣∣∣∣ = lim
n→∞

∣∣∣∣∣4n+1x2(n+1)

n + 2
· n + 1

4nx2n

∣∣∣∣∣ = lim
n→∞

∣∣∣∣4(n + 1)
n + 2

· x2
∣∣∣∣ HPwrs

= lim
n→∞

∣∣∣∣4n
n
· x2
∣∣∣∣ = |4x2|.

By the ratio test, the series converges if

|4x2| < 1 ⇐⇒ |x2| < 1
4
⇐⇒ |x| < 1

2

and diverges when |x| > 1
2 . The radius of convergence is R = 1

2 . What about the
endpoints a− R = 0− 1

2 = − 1
2 and a + R = 0 + 1

2 = 1
2 ?

For x = 1
2 : We get

∞

∑
n=0

4n( 1
2 )

2n

n + 1
=

∞

∑
n=0

1
n + 1

.

Using the limit comparison test with
∞

∑
n=0

1
n

we see that

lim
n→∞

cn

bn
= lim

n→∞

1
n + 1

· n
1

HPwrs
= 1.

Since
∞

∑
n=0

1
n

diverges (p-series, p = 1), then by the limit comparison test
∞

∑
n=0

1
n + 1

diverges.
For x = − 1

2 : We get

∞

∑
n=0

4n(− 1
2 )

2n

n + 1
=

∞

∑
n=0

(−1)n

n + 1
.

This is an alternating series with cn = 1
n+1 > 0 where limn→∞

1
n+1 = 0 and cn+1 =

1
n+2 < 1

n+1 = cn. So by the alternating series test,
∞

∑
n=0

4n(− 1
2 )

2n

n + 1
converges.

−1/2 a = 0 1/2

Interval of convergence: [− 1
2 , 1

2 )

[ )•

The interval of convergence is [− 1
2 , 1

2 ) and includes just one of the endpoints.

EXAMPLE 15.9. Determine the radius of convergence for the power series

∞

∑
n=1

3 · 6 · 9 · · · 3n(x + 2)n

1 · 3 · 5 · · · (2n− 1)
.

SOLUTION. We know that the series converges at its center a = −2. For any x 6= −2

lim
n→∞

∣∣∣∣ cn+1
cn

∣∣∣∣ = lim
n→∞

∣∣∣∣∣3 · 6 · 9 · · · 3n · (3n + 3)(x + 2)n+1

1 · 3 · 5 · · · (2n− 1) · (2n + 1)
· 1 · 3 · 5 · · · (2n− 1)

3 · 6 · 9 · · · 3n(x + 2)n

∣∣∣∣∣
= lim

n→∞

∣∣∣∣3n + 3
2n + 1

· (x + 2)
∣∣∣∣

HPwrs
= lim

n→∞

∣∣∣∣3n
2n
· (x + 2)

∣∣∣∣
=

∣∣∣∣3(x + 2)
2

∣∣∣∣ .
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By the ratio test, the series converges if∣∣∣∣3(x + 2)
2

∣∣∣∣ < 1 ⇐⇒ |x + 2| < 2
3

and diverges when |x + 2| > 2
3 . The radius of convergence is R = 2

3 .

Bonus: What about the endpoints a− R = −2− 2
3 = − 8

3 and a + R = −2 + 2
3 = − 4

3 ?
Determine whether the sereis converges at either endpoint.

EXAMPLE 15.10. Determine the radius and interval of convergence for the power series
∞

∑
n=0

n(x + 1)2n

9n .

SOLUTION. We know that the series converges at its center a = −1. For any x 6= −1

lim
n→∞

∣∣∣∣ cn+1
cn

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ (n + 1)(x + 1)2(n+1)

9n+1 · 9n

n(x + 1)2n

∣∣∣∣∣
= lim

n→∞

∣∣∣∣ (n + 1)
9n

· (x + 1)2
∣∣∣∣

HPwrs
= lim

n→∞

∣∣∣ n
9n
· (x + 1)2

∣∣∣
=

∣∣∣∣ (x + 1)2

9

∣∣∣∣ .

By the ratio test, the series converges if∣∣∣∣ (x + 1)2

9

∣∣∣∣ < 1 ⇐⇒ |(x + 1)2| < 9 ⇐⇒ |x + 1| < 3

and diverges when |x + 1| > 3. The radius of convergence is R = 3. What about the
endpoints a− R = −1− 3 = −4 and a + R = −1 + 3 = 2?

For x = 2: We get

∞

∑
n=0

n(2 + 1)2n

9n =
∞

∑
n=0

n32n

9n =
∞

∑
n=0

n(32)n

9n =
∞

∑
n=0

n9n

9n =
∞

∑
n=0

n.

Since lim
n→∞

n = ∞ 6= 0, by the nth term test the series diverges.
For x = −4: We again get

∞

∑
n=0

n(−4 + 1)2n

9n =
∞

∑
n=0

n(−3)2n

9n =
∞

∑
n=0

n9n

9n =
∞

∑
n=0

n

and so the series diverges.
−4 a = −1 2

Interval of convergence: (−4, 2)

( )•
The interval of convergence is (−4, 2) and includes no endpoints.


