
Introduction

Calculus I

Calculus I had as its theme “the slope problem.” How do we make sense of the
notion of slope for curves. . . when we only know what the slope of a line means?
The answer, of course, was the to define and determine the derivative of the curve
(function).
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Figure 1: If f is differentiable at a, then
then the secant lines through the points
(a, f (a)) and (a + h, f (a + h)) approach
the tangent line at (a, f (a)).

The reason that this purely geometric question is interesting and important
(for non-mathematicians) is that we can interpret many other questions as “slope
problems.” For example, velocity, acceleration, marginal cost, marginal profit, or
any rate of change is really a slope question in disguise.

Additionally points along a curve where the slope is 0 are critical because they
are potential extreme points for the curve, places where the function obtains its
maximum or minimum values. This can be applied to a whole host of problems.
For example, what tuition should HWS charge you to maximize its revenue?

Calculus II: The Area Problem

Calculus II has its own theme which also consists of a geometric question. In its
simplest form we can state it this way:

The Area Problem. Let f be a continuous (non-negative) function on the closed
interval [a, b]. Find the area bounded above by f (x), below by the x-axis, and by
the vertical lines x = a and x = b.
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y = f (x)

R f

Figure 2: Find the area R f under a
nonnegative continuous curve on the
interval [a, b].

For example, if we can solve the general area problem, we will be able to find
the area of a circle. Yes, we know it is πr2. But why is it πr2?! Eventually we will
be able to answer this question.

While the area problem is interesting in its own right, it is also important be-
cause we can interpret a number of problems as “area problems” in disguise.
Other geometrical quantities such as volume or length of a curve can be inter-
preted as area problems. Problems such as distance travelled or work done (in the
physics sense), and calculation of probabilities can also be interpreted as questions
about areas. We’ll also see that finding the average (or mean) value of a continuous
function (like temperature) depends on solving an area problem.

We will start to answer these questions in a couple of classes. For now, we need
to quickly review the prerequisites for the course.



Preliminaries and Prerequisites

You should be familiar with all the material in this chapter (Chapter 0) from your
previous calculus experience. We will not spend any substantial amount of time
reviewing this material.

Note: There is a lot more from Calculus I that I assume you know (e.g., how to
graph functions and find their extrema). The material in Chapter 0 is not the only
material that I expect you to know.

0.1 The Derivative

The derivative is the central concept of Calculus I. You should be very familiar
with both the derivative rules and the definition of the derivative.

The Definition of the Derivative

DEFINITION 0.1. Let f be a function defined in an open interval containing x. Then the
derivative f ′(x) is defined by

f ′(x) = lim
h→0

f (x + h)− f (x)
h

if the limit exists. When the limit does exist, we say that f is differentiable at x.
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Figure 3: If f is differentiable at a, then
then the secant lines through the points
(a, f (a)) and (a + h, f (a + h)) approach
the tangent line at (a, f (a)).

You may be familiar with an alternative definition for the derivative at a point a
which uses slightly different notation

f ′(a) = lim
x→a

f (x)− f (a)
x− a

The derivative represents an instantaneous rate of change. Geometrically the
derivative can be interpreted as the slope of the function at the point in question.

Derivative Formulæ

These basic derivative expressions should be familiar. In the last few, assume both
f and g are differentiable functions and that a is a constant.



math 131, prerequisites, part one preliminaries 3

Differentiation Formulæ
d

dx (c) = 0 d
dx (kx) = k

d
dx (xn) = nxn−1 d

dx (ln |x|) =
1
x

d
dx (sin ax) = a cos ax d

dx (cos ax) = −a sin ax
d

dx (tan ax) = a sec2 ax d
dx (sec ax) = a sec ax tan ax

d
dx (e

ax) = eax d
dx (arcsin x

a ) =
1√

a2−x2

d
dx (arctan x

a ) =
a

a2+x2
d

dx [ f (x)± g(x)] = f ′(x)± g′(x)
d

dx [c f (x)] = c f ′(x) d
dx [ f (x)g(x)] = f ′(x)g(x) + f (x)g′(x)

d
dx

[
f (x)
g(x)

]
=

f ′(x)g(x)− f (x)g′(x)
(g(x))2

d
dx [ f (g(x))] = f ′(g(x))g′(x)

Stop! Review

YOU TRY IT 0.1. The theme of Calculus I was differentiation. State the derivatives of each of
these functions. Answers to you try it 0.1 :

(a) nxn−1 (b) cos x (c) − sin x

(d) sec2 x (e) sec x tan x (f ) 0

(g) 2ex (h) 6x−1 (i) −nx−n−1 (j) 1
2 x−1/2

(k) 1
n x

1−n
n (l) m

n x
m−n

n

(m) 6x5 sin x + x6 cos x (n) −6 sin(6x)

(o) ex tan(4x) + ex(4 sec2 4x)

(p) 7esec x sec x tan x (q)
4
x

(r)
2x

1 + x4

(s)
2xe2x − (x2 + 1)2e2x

e4x =
2x− 2(x2 + 1)

e2x

(t) 2 sin x cos x

(a) xn (b) sin x (c) cos x (d) tan x (e) sec x (f ) c

(g) 2ex (h) 5 + 6 ln x (i) x−n (j)
√

x (k) n
√

x (l) n
√

xm

(m) x6 sin x (n) cos(6x) + 1 (o) ex tan(4x) (p) 7esec x

(q) ln(2x4) (r) arctan(x2) (s)
x2 + 1

e2x (t) sin2 x

YOU TRY IT 0.2. State the derivatives of each of these functions.

Answers to you try it 0.2 (remember
to simplify):

(a) f ′(x) = −4 sin x cos3 x

(b) g′(x) = (1 + x cos x)esin x

(c) g′(x) =
1

6x4 · 24x3 = 4x−1

(a) f (x) = cos4 x (b) g(x) = xesin x (c) g(x) = ln(6x4)

0.2 The Mean Value Theorem

The Mean Value Theorem is one of the most important theorems in elementary
calculus. It relates the global behavior of a function (how it changes over an en-
tire interval) to the local behavior of a function (the derivative of the function at a
particular point). The MVT is used to prove a number of important results in cal-
culus. For example, it is used to prove the first derivative test: If f ′(x) > 0, then f
is increasing.
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Figure 4: Parallel secant and tangent
lines exist when the Mean Value Theo-
rem applies.

You should be able to state the MVT and draw a graph that illustrates it.

THEOREM 0.1 (MVT: The Mean Value Theorem). Assume that

1. f is continuous on the closed interval [a, b];

2. f is differentiable on the open interval (a, b).

Then there is some point c between a and b so that

f ′(c) =
f (b)− f (a)

b− a
.

This is equivalent to saying f (b)− f (a) = f ′(c)(b− a).
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What the MVT Says. Let’s interpret the MVT geometrically. The average or mean
rate of change of f on the interval [a, b] is just

∆y
∆x

=
f (b)− f (a)

b− a
.

This is the familiar secant slope of the line through (a, f (a)) and (b, f (b)). The MVT
says if f is differentiable, we can find a point c between a and b so that the instan-
taneous rate of change or tangent slope or the derivative f ′(c) is the same as the secant
slope. When two lines (here the secant and tangent) have the same slope, they are
parallel. (See Figure 4 above.) If we think of the derivative as ‘velocity’, then the
MVT says that if you calculate your average velocity over a time interval, then at
some point during the interval your instantaneous velocity actually equals your average
velocity.

Mostly the MVT gets used to prove other theorems. But we can look at an ex-
ample or two to see how it works.

EXAMPLE 0.1. Show how the MVT applies to f (x) = x3 − 6x + 1 on [0, 3].

SOLUTION. Check the two conditions (hypotheses)

1. f is continuous on the closed interval [0, 3] because it is a polynomial;

2. f is differentiable on the open interval (0, 3) again because it is a polynomial;

So the MVT applies: There is some point c between 0 and 3 so that

f ′(c) =
f (3)− f (0)

3− 0
=

10− 1
3

= 3.

Since f ′(x) = 3x2 − 6, then

f ′(c) = 3c2 − 6 = 3⇒ 3c2 = 9⇒ c = ±
√

3

Only c =
√

3 is in the interval, so this is the value of c.

EXAMPLE 0.2. Show there does not exist a differentiable function on [1, 5] with f (1) =
−3 and f (5) = 9 with f ′(x) ≤ 2 for all x.

SOLUTION. The MVT would apply to such a function f : So there should be some
point c between 1 and 5 so that

f ′(c) =
f (5)− f (1)

5− 1
=

9− (−3)
4

= 3.

But supposedly f ′(x) ≤ 2 for all x. Contradiction. So no such f can exist.

EXAMPLE 0.3. It is also important to understand why the hypotheses of the theorem
are necessary.

−1 0 1
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Take the function f (x) = |x| on the interval [−1, 1]. Notice that if we tried to apply
the MVT here, the endpoints would be a = −1 and b = 1. So there should be a point c
between −1 and 1 so that

f ′(c) =
f (1)− f (−1)

1− (−1)
=
|1| − | − 1|

1 + 1
=

1− 1
2

= 0.

But you can see from the graph of f (x) = |x| that the slope is never 0; f ′(x) is either
−1 when x < 0 or 1 when x > 0. The problem here is that f (x) = |x| is NOT
differentiable at x = 0. |x| fails to satisfy the hypotheses of the MVT and for that reason
|x| does not satisfy the conclusion of the MVT on the interval [−1, 1].
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Using the MVT. We will almost never use the MVT as in the three examples
above. That does not mean you should not spend time understanding these
exaples because they illustrate the key ideas of the theorem. However, the key
value of the MVT is in proving other results. We mentioned earlier that the MVT
is used to prove that functions with positive (negative) derivatives are increas-
ing (resp., decreasing). We will see a further application of the MVT when we we
prove the Fundamental Theorem of Calculus relating antidifferentiation to the
problem of finding the area under a curve.

0.3 Antiderivatives

If you know the velocity of an object, can you determine the position of the ob-
ject? This could happen in a car, say, where the speedometer readings were being
recorded. Can the position of the car be determined from this information? Sim-
ilarly, can the position of an airplane be determined from the black box which
records the airspeed?

Remembering that velocity is really just a derivative, we can ask this same ques-
tion more generally: Given f ′(x) can we find the function f (x)? We usually state
the problem this way.

DEFINITION 0.2. Let f (x) be a function defined on an interval I. We say that F(x) is an
antiderivative of f (x) on I if

F′(x) = f (x) for all x ∈ I.

EXAMPLE 0.4. If f (x) = 2x, then F(x) = x2 is an antiderivative of f because

F′(x) = 2x = f (x).

But so is G(x) = x2 + 1 or, more generally, H(x) = x2 + c.

Are there ‘other’ antiderivatives of f (x) = 2x besides those of the form H(x) =
x2 + c? We can use the MVT to show that the answer is ‘No.’ The proof will re-
quire two steps.

THEOREM 0.2. If F′(x) = 0 for all x in an interval I, then F(x) = k is a constant function.

This makes a lot of sense: If the velocity of an object is 0, then its position is
constant (not changing). Here’s the

Proof. To show that F(x) is constant, we must show that any two output values of
F are the same, i.e., F(a) = F(b) for all a and b in I.

So pick any a and b in I (with a < b). Because F is differentiable on I, then F
is both continuous and differentiable on the smaller interval [a, b]. So the MVT
applies (Theorem 0.1—look at its equivalent statement). There is a point c between
a and b so that

F(b)− F(a) = F′(c)(b− a)

because we are given that F′ is always 0 we can substitute in and say

F(b)− F(a) = 0(b− a) = 0

Since F(b)− F(a) = 0, this means F(b) = F(a). In other words, F is constant.

THEOREM 0.3. If F(x) and G(x) are both antiderivatives of f (x) on an interval I, then
G(x) = F(x) + k. That is, any two antiderivatives of the same function differ by a constant.
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Proof. Assume F(x) and G(x) are both antiderivatives of f (x) on an interval I.
Consider the function G(x)− F(x) on I. Then

d
dx

[G(x)− F(x)] = G′(x)− F′(x) = f (x)− f (x) = 0.

Therefore, by Theorem 0.2 that we just proved

G(x)− F(x) = k

so
G(x) = F(x) + k.

DEFINITION 0.3. If F(x) is any antiderivative of f (x), we say that F(x) + c is the general
antiderivative of f (x) on I.

Notation for Antiderivatives

Antidifferentiation is also called ‘indefinite integration.’∫
f (x) dx = F(x) + c.

•
∫

is the integration symbol

• f (x) is called the integrand

• dx indicates the variable of integration (here it is x)

• F(x) is a particular antiderivative of f (x)

• and c is the constant of integration.

• We refer to
∫

f (x) dx as an ‘antiderivative of f (x)’ or an ‘indefinite integral of
f .’

Here are several examples. ∫
cos t dt = sin t + c

∫
ez dz = ez + c∫ 1

1 + x2 dx = arctan x + c

Antidifferentiation reverses differentiation so∫
F′(x) dx = F(x) + c

as long as F′(x) is continuous. And differentiation undoes antidifferentiation so

d
dx

[∫
f (x) dx

]
= f (x).

Since differentiation and antidifferentiation are reverse processes, each derivative
rule has a corresponding antidifferentiation rule.



math 131, prerequisites, part one preliminaries 7

Differentiation Antidifferentiation
d

dx (c) = 0
∫

0 dx = c
d

dx (xn) = nxn−1
∫

xn dx = xn+1

n+1 + c, n 6= −1
d

dx (ln |x|) =
1
x

∫
x−1 dx =

∫ 1
x dx = ln |x|+ c

d
dx (sin ax) = a cos ax

∫
cos ax dx = 1

a sin ax + c
d

dx (cos ax) = −a sin ax
∫

sin ax dx = − 1
a cos ax + c

d
dx (tan ax) = a sec2 ax

∫
sec2 ax dx = 1

a tan ax + c
d

dx (sec ax) = sec ax tan ax
∫

sec ax tan ax dx = 1
a sec ax + c

d
dx (e

ax) = aeax ∫
eax dx = 1

a eax + c
d

dx (arcsin x
a ) =

1√
a2−x2

∫ 1√
a2−x2 dx = arcsin x

a + c
d

dx (arctan x
a ) =

a
a2+x2

∫ 1
a2+x2 dx = 1

a arctan x
a + c

0.4 General Antiderivative Rules

The key idea is that each derivative rule can be written as an antiderivative rule.
We’ve seen how this works with specific functions like sin x and ex and now we
examine how the general derivative rules can be ‘reversed.’

THEOREM 0.4 (Sum Rule). The sum rule for derivatives says

d
dx

(F(x)± G(x)) =
d

dx
(F(x))± d

dx
(G(x)).

The corresponding antiderivative rule is∫
( f (x)± g(x)) dx =

∫
f (x) dx±

∫
g(x) dx.

THEOREM 0.5 (Constant Multiple Rule). The constant multiple rule for derivatives says

d
dx

(cF(x)) = c
d

dx
(F(x)).

The corresponding antiderivative rule is∫
c f (x) dx = c

∫
f (x) dx.

Simple Examples

Be sure you understand how the basic antiderivative rules apply in each of these
problems.

EXAMPLE 0.5. Each of these antiderivatives uses multiple rules. Try to identify them.∫
8x3 − 7

√
x dx =

∫
8x3 dx−

∫
7x1/2 dx = 8

∫
x3 dx− 7

∫
x1/2 dx

=
8x4

4
− 7x3/2

3/2
+ c = 2x4 − 14x3/2

3
+ c

∫
6 cos 2x− 7

x
+ 2x−1/3 dx = 6

∫
cos 2x dx− 7

∫ 1
x

dx + 2
∫

x−1/3 dx

= 6 · 1
2
· sin 2x− 7 ln |x|+ 2x2/3

2/3
+ c = 3 sin 2x− 7 ln |x|+ 3x2/3 + c.
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∫
3ex/2 − 8√

16− x2
dx = 3

∫
e

1
2 x dx− 8

∫ 1√
42 − x2

dx = 3 · 1
1
2
· ex/2 − 8 arcsin

x
4
+ c

= 6ex/2 − 8 arcsin
x
4
+ c.

YOU TRY IT 0.3. Determine each of the antiderivatives of each of the functions below.

(a)
∫ √

x + x99 dx (b)
∫

5x1/4 − 3e−2x dx (c)
∫

4 sec2 x
3
+ 3x−2 dx

Answers to you try it 0.3 :

(a)
2
3

x3/2 +
1

100
x100 + c

(b) 4x5/4 +
3
2

e−2x + c

(c) 12 tan
x
3
− 3x−1 + c

Examples with Rewriting

Sometimes the antidifferentiation process is greatly simplified by rewriting the
integrand before any antidifferentiation is attempted. This may involve rewriting
powers as exponents, dividing out common factors, or multiplying out products.

Integral Rewritten Solution∫
4 5√t2 dt = 4

∫
t2/5 dt = 20

7 t7/5 + c∫ x4+2
x2 dx =

∫
x2 + 2x−2 dx = 1

3 x3 − 2x−1 + c∫
6x2(x4 − 1) dx =

∫
6x6 − 6x2 dx = 6

7 x7 − 2x3 + c∫ 1
6x4 dx = 1

6

∫
x−4 dx = − 1

18 x−3 + c∫ 7
4 3√s

ds = 7
4

∫
s−1/3 ds = 21

8 s2/3 + c∫ 4
9+x2 dx = 4

∫ 1
32+x2 dx = 4 · 1

3 · arctan x
3 + c = 4

3 arctan x
3 + c∫ 1

2
√

25−x2 dx = 1
2

∫ 1√
52−x2 dx = 1

2 arcsin x
5 + c∫ 2

√
x+3
x dx = 2

∫
x−1/2 dx + 3

∫ 1
x dx = 4x1/2 + 3 ln |x|+ c

YOU TRY IT 0.4. Determine these antiderivatives.

(a)
∫

2 sec 3x tan 3x dx (b)
∫ 7x3 −

√
x− 4

x
dx (c)

∫
5

4
√

x3 + 3x−2 dx

Answers to you try it 0.4 :

(a)
2
3

sec 3x + c

(b)
7x3

3
− 2x1/2 − 4 ln |x|+ c

(c)
20x7/4

7
− 3x−1 + c

YOU TRY IT 0.5. Which general rules have we not yet reversed? Try to write down the corre-
sponding antiderivative rules similar to Theorem 0.4 and Theorem 0.5.
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0.5 Evaluating ‘c’ (Initial Value Problems)

In each general antiderivative there is an unknown constant c. This is what makes
the integral “indefinite.” If an object is moving along a straight line, we know that
the derivative of the position function s(t) is the velocity function s′(t) = v(t).
What this means is if we know the velocity v(t) of the car we are driving in (just
look at the speedometer), we can determine the position s(t) of the car, up to a
constant c if we can find an antiderivative for v(t). If we have more information, the
position of the car at a particular time say, then we are able to determine the pre-
cise antiderivative and exact position. Let’s see how this works in general before
we apply it to motion problems.

EXAMPLE 0.6. Suppose that f ′(x) = ex + 2x and f (0) = 3. Find f (x). In this context
f (0) is sometimes called the initial value and such questions are referred to as initial
value problems. [How could you interpret this information in terms of motion of a car?]

SOLUTION. f (x) must be an antiderivative of f ′(x) so

f (x) =
∫

f ′(x) dx =
∫

ex + 2x dx = ex + x2 + c.

Now use the initial value to solve for c:

f (0) = e0 + 02 + c = 3⇒ 1 + c = 3⇒ c = 2.

Therefore, f (x) = ex + x2 + 2.

EXAMPLE 0.7. Suppose that f ′(x) = 6x2 − 2x3 and f (1) = 4. Find f (x).

SOLUTION. Again f (x) must be an antiderivative of f ′(x) so

f (x) =
∫

f ′(x) dx =
∫

6x2 − 2x3 dx = 2x3 − x4

2
+ c.

Now use the ‘initial’ value to solve for c:

f (1) = 2− 1/2 + c = 4⇒ c = 5/2.

Therefore, f (x) = 2x3 − 1
2 x4 + 5

2 .

EXAMPLE 0.8. Suppose that f ′′(t) = 6t−2 (think acceleration) with f ′(1) = 8 (think
velocity) and f (1) = 3 (think position). Find f (t).

SOLUTION. First find f ′(t) which is just the antiderivative of f ′′(t). So

f ′(t) =
∫

f ′′(t) dt =
∫

6t−2 dt = −6t−1 + c.

Now use the ‘initial’ value for f ′(t) to solve for c:

f ′(1) = −6(1) + c = 8⇒ c = 14.

Therefore, f ′(t) = −6t−1 + 14. Now we are back to the earlier problem.

f (t) =
∫

f ′(t) dt =
∫
−6t−1 + 14 dt = −6 ln |t|+ 14t + c.

Now use the ‘initial’ value of f to solve for c:

f (1) = −6 ln 1 + 14(1) + c = 3⇒ 6(0) + 14 + c = 3⇒ c = −11.

So f (t) = 6 ln |t|+ 14t− 11.
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More Practice

EXAMPLE 0.9. Find f given that f ′(x) = 6
√

x + 5x
3
2 where f (1) = 10.

SOLUTION. f (x) must be an antiderivative of f ′(x) so

f (x) =
∫

f ′(x) dx =
∫

6
√

x + 5x
3
2 dx = 4x3/2 + 2x5/2 + c.

Use the ‘initial’ value to solve for c:

f (1) = 4 + 2 + c = 10⇒ c = 4.

Therefore, f (x) = 4x3/2 + 2x5/2 + 4.

EXAMPLE 0.10. Find f given that f ′′(θ) = sin θ + cos θ where f ′(0) = 1 and f (0) = 2.

SOLUTION. First find f ′(θ) which must be the antiderivative of f ′′(θ). So

f ′(θ) =
∫

f ′′(θ) dθ =
∫

sin θ + cos θ dθ = − cos θ + sin θ + c.

Now use the initial value for f ′(θ) to solve for c:

f ′(0) = − cos 0 + sin 0 + c = −1 + 0 + c = 1⇒ c = 2.

Therefore, f ′(θ) = − cos θ + sin θ + 2.

f (θ) =
∫

f ′(θ) dθ =
∫
− cos θ + sin θ + 2 dθ = − sin θ − cos θ + 2θ + c.

Now use the initial value of f to solve for c:

f (0) = − sin 0− cos 0 + 2(0) + c = 0− 1 + c = 2⇒ c = 3.

So f (θ) = − sin θ − cos θ + 2θ + 3.

0.6 Motion Problems

In Calculus I you interpreted the first and second derivatives as velocity and accel-
eration in the context of motion. So let’s apply the initial value problem results to
motion problems. Recall that

• s(t) = position at time t.

• s′(t) = v(t) = velocity at time t.

• s′′(t) = v′(t) = a(t) = acceleration at time t.

Therefore

•
∫

a(t) dt = v(t) + c1 = velocity.

•
∫

v(t) dt = s(t) + c2 = position at time t.

We will need to use additional information to evaluate the constants c1 and c2.

EXAMPLE 0.11. Suppose that the acceleration of an object is given by a(t) = 2− cos t
for t ≥ 0 with

• v(0) = 1, this is also denoted v0

• s(0) = 3, this is also denoted s0.

Find s(t).
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SOLUTION. First find v(t) which is the antiderivative of a(t).

v(t) =
∫

a(t) dt =
∫

2− cos t dt = 2t− sin t + c1.

Now use the initial value for v(t) to solve for c1:

v(0) = 0− 0 + c1 = 1⇒ c1 = 1.

Therefore, v(t) = 2t− sin t + 1. Now solve for s(t) by taking the antiderivative of v(t).

s(t) =
∫

v(t) dt =
∫

2t− sin t + 1 dt = t2 + cos t + t + c2

Now use the initial value of s to solve for c2:

s(0) = 0 + cos 0 + c2 = 3⇒ 1 + c2 = 3⇒ c2 = 2.

So s(t) = t2 + cos t + 2t + 2.

EXAMPLE 0.12. If acceleration is given by a(t) = 10 + 3t− 3t2, find the exact position
function if s(0) = 1 and s(2) = 11.

SOLUTION. First

v(t) =
∫

a(t) dt =
∫

10 + 3t− 3t2 dt = 10t + 3
2 t2 − t3 + c.

Now
s(t) =

∫
10t + 3

2 t2 − t3 + c dt = 5t2 + 1
2 t3 − 1

4 t4 + ct + d.

But s(0) = 0 + 0− 0 + 0 + d = 1 so d = 1. Then s(2) = 20 + 4− 4 + 2c + 1 = 11 so
2c = −10⇒ c = −5. Thus, s(t) = 5t2 + 1

2 t3 − 1
4 t4 − 5t + 1.

EXAMPLE 0.13. If acceleration is given by a(t) = sin t + cos t, find the position function
if s(0) = 1 and s(2π) = −1.

SOLUTION. First

v(t) =
∫

a(t) dt =
∫

sin t + cos t dt = − cos t + sin t + c.

Now
s(t) =

∫
− cos t + sin t + c dt = − sin t− cos t + ct + d.

But s(0) = 0− 1 + 0 + 0 + d = 1 so d = 2. Then s(2π) = 0− 1 + 2cπ + 2 = −1 so
2πc = −2⇒ c = − 1

π + 2. Thus, s(t) = cos t + sin t− 1
π t.

0.7 Constant Acceleration: Gravity

In many motion problems the acceleration is constant. This happens when an
object is thrown or dropped and the only acceleration is due to gravity. In such a
situation we have

• a(t) = a, constant acceleration

• with initial velocity v(0) = v0

• and initial position s(0) = s0.

Then
v(t) =

∫
a(t) dt =

∫
a dt = at + c.

But
v(0) = a · 0 + c = v0 ⇒ c = v0.
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So
v(t) = at + v0.

Next,
s(t) =

∫
v(t) dt =

∫
at + v0 dt = 1

2 at2 + v0t + c.

At time t = 0,
s(0) = 1

2 a(0)2 + v0(0) + c = s0 ⇒ c = s0.

Therefore
s(t) = 1

2 at2 + v0t + s0.

EXAMPLE 0.14. Suppose a ball is thrown with initial velocity 96 ft/s from a roof top
432 feet high. The acceleration due to gravity is constant a(t) = −32 ft/s2. Find v(t)
and s(t). Then find the maximum height of the ball and the time when the ball hits
the ground.

SOLUTION. Recognizing that v0 = 96 and s0 = 432 and that the acceleration is
constant, we may use the general formulas we just developed.

v(t) = at + v0 = −32t + 96

and
s(t) = 1

2 at2 + v0t + s0 = −16t2 + 96t + 432.

The max height occurs when the velocity is 0 (when the ball stops rising):

v(t) = −32t + 96 = 0⇒ t = 3⇒ s(3) = −144 + 288 + 432 = 576 ft.

The ball hits the ground when s(t) = 0.

s(t) = −16t2 + 96t + 432 = −16(t2 − 6t− 27) = −16(t− 9)(t + 3) = 0.

So t = 9 only (since t = −3 does not make sense).

EXAMPLE 0.15. A person drops a stone from a bridge. What is the height (in feet) of
the bridge if the person hears the splash 5 seconds after dropping it?

SOLUTION. Here’s what we know. v0 = 0 (dropped) and s(5) = 0 (hits water). And
we know acceleration is constant, a = −32 ft/s2. We want to find the height of the
bridge, which is just s0. Use our constant acceleration motion formulas to solve for a.

v(t) = at + v0 = −32t

and
s(t) = 1

2 at2 + v0t + s0 = −16t2 + s0.

Now we use the position we know: s(5) = 0.

s(5) = −16(5)2 + s0 ⇒ s0 = 400 ft.

Notice that we did not need to use the velocity function.

YOU TRY IT 0.6 (Extra Credit). In the previous problem we did not take into account that
sound does not travel instantaneously in your calculation above. Assume that sound trav- Check on your answer: Should the

bridge be higher or lower than in the
preceding example? Why?

els at 1120 ft/s. What is the height (in feet) of the bridge if the person hears the splash 5

seconds after dropping it?

EXAMPLE 0.16. Here’s a variation. This time we will use metric units. Suppose a ball
is thrown with unknown initial velocity v0 m/s from a roof top 49 meters high and
the position of the ball at time t = 3 is s(3) = 0. The acceleration due to gravity is
constant a(t) = −9.8 m/s2. Find v(t) and s(t).



math 131, prerequisites, part one preliminaries 13

SOLUTION. This time v0 is unknown but s0 = 49 and s(3) = 0. Again the acceleration
is constant so we may use the general formulas for this situation.

v(t) = at + v0 = −9.8t + v0

and
s(t) = 1

2 at2 + v0t + s0 = −4.9t2 + v0t + 49.

But we know that
s(3) = −4.9(3)2 + v0 · 3 + 49 = 0

which means

3v0 = 4.9(9)− 4.9(10) = −4.9⇒ v0 = −4.9/3.

So
v(t) = −9.8t− 49

30

and
s(t) = −4.9t2 − 49

30 t + 49.

Interpret v0 = −4.9/3.

EXAMPLE 0.17. Mo Green is attempting to run the 100m dash in the Geneva Invi-
tational Track Meet in 9.8 seconds. He wants to run in a way that his acceleration is
constant, a, over the entire race. Determine his velocity function. (a will still appear as
an unknown constant.) Determine his position function. There should be no unknown
constants in your equation at this point. What is his velocity at the end of the race?
Do you think this is realistic?

SOLUTION. We have: constant acceleration = a m/s2; v0 = 0 m/s; s0 = 0 m. So

v(t) = at + v0 = at

and
s(t) = 1

2 at2 + v0t + s0 = 1
2 at2.

But s(9.8) = 1
2 a(9.8)2 = 100, so a = 200

(9.8)2 = 2.0825 m/s2. So s(t) = 2.0825t2. Mo’s
velocity at the end of the race is v(9.8) = a · 9.8 = 2.0825(9.8) = 20.41 m/s. . . not
realistic.

EXAMPLE 0.18. A stone dropped off a cliff hits the ground with speed of 120 ft/s.
What was the height of the cliff?

SOLUTION. Notice that v0 = 0 (dropped!) and s0 is unknown but is equal to the cliff
height, and that the acceleration is constant a = −32 ft/. Use the general formulas for
motion with constant acceleration:

v(t) = at + v0 = −32t + 0 = −32t .

Now we use the velocity function and the one velocity value we know: v = −120
when it hits the ground. So the time when it hits the ground is given by

v(t) = −32t = −120⇒ t = 120/32 = 15/4

when it hits the ground. Now remember when it hits the ground the height is 0. So
s(15/4) = 0. But we know

s(t) = 1
2 at2 + v0t + s0 = −16t2 + 0t + s0 = −16t2 + s0.

Now substitute in t = 15/4 and solve for s0.

s(15/4) = 0⇒ −16(15/4)2 + s0 = 0⇒ s0 = 152 = 225.

The cliff height is 225 feet.
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EXAMPLE 0.19. A car is traveling at 90 km/h when the driver sees a deer 75 m ahead
and slams on the brakes. What constant deceleration is required to avoid hitting
Bambi? [Note: First convert 90 km/h to m/s.]

SOLUTION. Let’s list all that we know. v0 = 90 km/h or 90000
60·60 = 25 m/s and s0 = 0.

Let time t∗ represent the time it takes to stop. Then s(t∗) = 75 m. Now the car is
stopped at time t∗, so we know v(t∗) = 0. Finally we know that acceleration is an
unknown constant, a, which is what we want to find.

Now we use our constant acceleration motion formulas to solve for a.

v(t) = at + v0 = at + 25

and
s(t) = 1

2 at2 + v0t + s0 = 1
2 at2 + 25t.

Now use the other velocity and position we know: v(t∗) = 0 and s(t∗) = 75 when the
car stops. So

v(t∗) = at∗ + 25 = 0⇒ t∗ = −25/a

and
s(t∗) = 1

2 a(t∗)2 + 25t∗ = 1
2 a(−25/a)2 + 25(−25/a) = 75.

Simplify to get

625a
2a2 −

625
a

=
625
2a
− 1350

2a
= −625

2a
= 75⇒ 150a = −625

so
a = −625

150
= −25

6
m/s.

(Why is acceleration negative?)

EXAMPLE 0.20. One car intends to pass another on a back road. What constant accel-
eration is required to increase the speed of a car from 30 mph (44 ft/s) to 50 mph ( 220

3
ft/s) in 5 seconds?

SOLUTION. Given: a(t) = a constant. v0 = 44 ft/s. s0 = 0. And v(5) = 220
3 ft/s. Find

a. But
v(t) = at + v0 = at + 44.

So
v(5) = 5a + 44 =

220
3
⇒ 5a =

220
3
− 44 =

88
3

.

Thus a = 88
15 .

YOU TRY IT 0.7. A toy bumper car is moving back and forth along a straight track. Its accel-
eration is a(t) = cos t + sin t. Find the particular velocity and position functions given that
v(π/4) = 0 and s(π) = 1.

Answer to you try it 0.7 : v(t) =∫
a(t) dt =

∫
cos t + sin t dt = sin t−

cos t + c. So v(π/4) =
√

2
2 −

√
2

2 + c =
0 ⇒ c = 0. Thus, v(t) = sin t− cos t.
Now s(t) =

∫
v(t) dt =

∫
sin t −

cos t dt = − cos t − sin t + c. Since
s(π) = −(−1)− 0 + c = 1 ⇒ c = 0. So
s(t) = − cos t− sin t.

YOU TRY IT 0.8 (Graphical integration). Let F(x) be an antiderivative of f (x) on [0, 6], where f
in Figure 5. Since F is an antiderivative of f , then F′ = f . Use this relationship to answer the
following questions.

(a) On what interval(s) is F increasing? (Give a reason for your answer.)

(b) At what point(s), if any, does F have a local max?

(c) On what interval(s) is F concave up?

(d) At what point(s), if any, does F have points of inflection?

(e) Assume that F passes through (0,−2) indicated with a •; draw a potential graph of F.
Answer to you try it 0.8 : Justify each.

(a) [0, 5]

(b) x = 5

(c) [0, 2]

(d) x = 2
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Figure 5: This is the graph of f (x). Can
you draw a graph of its antiderivative
F(x)?
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