MATH 131

Two Methods to Evaluate Definite Integrals

At the moment we have two methods to evaluate | ah f(x)dx.

1.

Definition 1.3 says that we we can evaluate | ab f(x)dx as a limit, most conve-
niently as limy,,_,. Right(n). This is what you did in you TrY 1T 1.8 and what
we have carried out in other problems.

. On the other hand, we can use Definition 1.4 and ask whether | ab f(x) dx repre-
sents some well-known area. If so, we can use the corresponding area formula
to evaluate the integral. Below you will find several such examples.

7
EXAMPLE 1.0.1. Determine / 2dx. (See Figure 1.22.)
3

SOLUTION. The area under the graph of the constant function f(x) = 2 is a rectangle.
So

7
/ 2dx = Area(rectangle) =bx h=4x2=8.
3

5
EXAMPLE 1.0.2. Determine / 2x + 1dx. (See Figure 1.23.)
1

SOLUTION. The area under the linear function f(x) = 2x + 1 is a trapezoid (which
can be split into a rectangle and triangle if you have forgotten the area formula for a
trapezoid).

5
/ 2x + 1dx = Area(trapezoid) = 1(by + by) x h = (3 +11) x 4 = 28.
1
Or

5
/1 2x + 1dx = Area(triangle + rectangle) = 1(4)(8) + (4)(3) = 28.

3
EXAMPLE 1.0.3. Determine / V9 — x2dx.
0

SOLUTION. The area under f(x) = v/9 — x2 is a quarter-circle of radius 3. So

3
/ V9 — x2dx = Area(quarter-circle) = 1(7r?) = 2.
0

27
EXAMPLE 1.0.4. Determine / sin x dx.
0

SOLUTION. The area above the x-axis in Figure 1.25 is the same as the area below the
axis. Thus, the net area is 0 which means

27
/ sinxdx = 0.
0

EXAMPLE 1.0.5. Change the interval in the previous problem. This time determine

T
/ sin x dx.
0

SOLUTION. Now we cannot take advantage of symmetry and we do not have an ‘area
formula’ for the area under the sine function. We would need to use Riemann sums.
You can check that

L kn\
Right(n) = sin| — |- —.
ahn) = Yo sin (47
However, we don’t have a ‘summation formula’ to simplify this sum. For the time
being, we are stuck!
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Figure 1.1: The area under f(x) =2isa
rectangle.
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Figure 1.2: The area under f(x) =
2x + 1 is a trapezoid.
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Figure 1.3: The area under f(x) =
V9 — x2 is a quarter-circle.
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Figure 1.4: The net area under f(x) =
sin x is o.
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Figure 1.5: We don’t yet know how to
find the area under f(x) = sinx on
[0, t].
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1
EXAMPLE 1.0.6. Determine / —V1—x2dx.
1

SOLUTION. The area under f(x) = —v/1 — x2 is a unit semi-circle below the x-axis. So

NIx

1
/ —V/1—x2dx = — Area(semi-circle) = —1(mr2) = —
-1

Take-home Message. Example 1.0.10 points out that even though the definite inte-
gral ‘solves’ the area problem, we must still be able to evaluate the Riemann sums
involved. If the region is not a familiar one and we can’t determine

lim if(ck)Axk,

all Axy — 0k=1

b
then we are stuck in trying to evaluate / f(x) dx. In other words, we must find

a
yet another method to evaluate definite integrals.

Useful Properties of the Definite Integrals

The definition of the definite integral of f on [a, b] requires that 2 < b. However, it
is convenient to extend this definition to the two other cases: @ = band a > b. In
the first of these cases, when a = b the geometry tells us that the area should be 0.
(See Figure 1.28.) When a > b we can think of the Riemann sums taking place in
reverse going from right to left: Ax = bn;” is now negative since a > b so the terms
in the Riemann sum all change sign, so the integral changes sign when the limits

are reversed. These two observations are summarized in the following definition.

DEFINITION 1.1. We extend the definition of the definite integral as follows:

a
1. If f is defined at 4, then / f(x)dx =0.
a

a b
2. If f is integrable on [4, D], then /b f(x)dx = —/ f(x)dx.
a

EXAMPLE 1.0.7. In Example 1.0.5, we saw that / 3 dx = —3 so reversing the limits and
-1

using part 2 of Definition 1.5 we obtain / % dx = 3. Using part 1 of Definition 1.5 we find
2

1
/ e*dx = 0.
1

We can generalize the result in Example 1.0.6. Observe that if f(x) = kisa
constant function, then the area it determines is a rectangle so

b
/ kdx = k(b — a).

In this case, the geometry shows that we have a rectangle of height k and width
b — a (see Figure 1.29).

Since we have assumed that we can compute areas of non-overlapping re-
gions by summing the areas of the individual pieces (see Basic Area Property 3
on page 1) as in Figure 1.30. Consequently,

| |

Figure 1.6: The area between f(x) =
—+/1 — x2 and the x-axis is a semi-circle
below the axis.
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a

Figure 1.7: The area below a single
point is 0. Equivalently, [ f(x)dx = 0.
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Figure 1.8: The area formed by a
constant function is a rectangle.
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THEOREM 1.1 (Additivity). If f is integrable on the three closed intervals determined by a, b,

and ¢, then
b c -C
Af(x)dx+/h f(x)dx:/a f(x)dx

Note: The order of the points does not matter.

12 8 12
EXAMPLE 1.0.8. Suppose that f(x)dx =25 and / f(x)dx = 14, determine f(x)dx
Jo Jo J8

SOLUTION. From Theorem 1.4 we have

8 12 12
/Of(x)der./8 f(x)dx:v0 f(x)dx

12

4+ [ flx)dy=25
12

/8 f(x)dx =11.

1
EXAMPLE 1.0.9. Determine / |x| dx.
-2

SOLUTION. This time we use a bit of geometry. From Figure 1.31 we see that we can
divide the the region between the graph and the function into two triangles. So using
Theorem 1.4 we have

1 0 1
[ xlax= [ jrlax+ [ lxldx = 3@)@) + d0)(1) =25
Because a definite integral is the limit of a (Riemann) sum, it has the both the
distributive and associative properties:
n
Z ckAxk—kackAxk

k=1 k=1

and

1=

[f (ck) + g(c)]Axy = Zf k) Axy + Zg Ck) Axy.

k=1 k=1 k=1

Taking limits, we see

THEOREM 1.2 (Linearity). If f and g are integrable on [4, b] and k is any constant, then kf(x)
and f(x) £ g(x) are integrable on [a, b]. Further,

/abkf(x)dx:k/abf(x)dx
/abf(x)ig(x)dx:/abf(x)dxi/uhg(x)dx

12 12
EXAMPLE 1.0.10. Suppose that / f(x)dx = 25 and / g(x) = —4. Evaluate each of the
0 0

1.

following definite integrals.

@ [(sf@a 0 [0-w@a © [sma @ [ 20 dx

SOLUTION. Use Theorem 1.5 for part (a).

@ /;2 3f(x)dx = 3/012f(x) dx = 3(25) = 75.
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Figure 1.9: If f is integrable on [a, D]
and [b, c], then f is integrable on [a, c].

a —4— — — —

|
!
|
| !
| !
! !
—2 1

Figure 1.10: To determine sz |x| dx,
divide the the region between the graph
and the function into two triangles.
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(b) Use both parts of Theorem 1.5
12 12 12
/0 2f(x) —9g(x)dx = /0 2f(x)dx _/O 9g(x) dx
12
—2/ flx dxf9/ 2(25) — 9(—4) = 86.
(c) This time use both Definition 1.5 and Theorem 1.5 as well as our observation
about constant functions.
E / 3—g(x)d
; 8(x 8(x)dx
12
=— 3dxf/ g(x)dx = (12)(3) —4 = 32.
0 0
12
(d) This time notice that both endpoints are equal, so / x? f(x)dx =0.
12
Another important property of definite integrals is that they preserve inequali-
ties.
THEOREM 1.3. Assume that f and g are both integrable on [a, b].
1. If f(x) > 0 for all x in [a,b], then
b
/ f(x)dx > 0.
a
. . f(x)
2. More generally, if f(x) > g(x) for all x in [a,b], then \/I
I
b b I |
[ r@dx= [ g | |
a Ja
8 :
While we won't give proofs of either part of Theorem 1.6, the intuition is clear. ‘ IL ‘
. . . . a c
For part 1, Since f(x) > 0 on the interval, then for any point ¢, in [a, b], we have Figure 1.11: 1f f(x) > g(x) on [a,b] and
f(ck) > 0. So " " both are integrable, then fabf(x) dx >
b
Z f(ck)Axk > Z 0Ax, = 0. Jo 8(x)dx
k=1 k=1
Taking limits gives fabf(x) dx > 0. For part 2, since f(x) > g(x), then f(x) —
g(x) > 0 for all x in [a, b]. So by part 1,
/ F(x) = g(x)dx >0
and so by the linearity theorem (Theorem 1.5) we have
b b b b
/ f(x)dx—/ g(x)dx20:>/ f(x)de/ ¢(x)dx. 2 |
a a a a f(x) |
4 |
YOU TRY IT 1.1. Determine / f(x) dx for the function f in Figure 1.32. _:5 3 Jl
_5 —
|
_n

Figure 1.12: Find the area between f

and the x-axis.

Answer to YOU TRY IT 1.9 :

9
9z 1.



