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Alternating Series

So far we’ve dealt primarily with series
∞

∑
n=1

an where an was positive or at least

non-negative. In fact the hypotheses of the integral test and the two comparison
tests require that the terms of the series be positive. But some series have both
positive and negative terms the simplest are so-called alternating series where the
positive and negative terms alternate in the series. Such series can be defined as
follows:

DEFINITION 14.4. An alternating series can be written in the form
∞

∑
n=1

(−1)nan = −a1 + a2 − a3 + a4 − · · · or
∞

∑
n=1

(−1)n+1an = a1 − a2 + a3 − a4 + · · ·

where we assume that all the terms an are positive.

For example, the series
∞

∑
n=1

(−1)n+1

n
= 1− 1

2
+

1
3
+

1
4
− · · ·

is called the alternating harmonic series. You should remember this series. We
know that the harmonic series diverges, but what about the alternating harmonic
series? Do the positive and negative terms cancel each other out in a way that the
sum now converges? The answer is not obvious.

We have already encountered a few alternating series in the form of geometric
series. For example, using the geometric series test (Theorem 13.1)

∞

∑
n=0

(−1)n
(

2
3

)n
=

∞

∑
n=0

(
−2
3

)n
=

1
1 + 2

3
=

3
5

,

which converges, while
∞

∑
n=1

(−1)n = −1 + 1− 1 + 1− · · ·

diverges.
There’s one key result for alternating series which we state without proof.

THEOREM 14.10 (The Alternating Series Test). Assume that an > 0 for all n. The alternating
series

∞

∑
n=1

(−1)nan or
∞

∑
n=1

(−1)n+1an

converge if they satisfy the following two conditions:

1. lim
n→∞

an = 0 Note: If an alternating series does
not pass the first condition of the
Alternating Series Test, then you can
use the nth term test for divergence
to conclude that the series actually
diverges.

2. an+1 ≤ an for all n (or at least eventually for all n ≥ k).

In other words, to show that an alternating series converges, it suffices to show
that it satisfies the nth term test—that is, the nth term goes to 0,—and that the
series is decreasing (or at least non-increasing). Note that the second condition can
also be written as an+1

an
≤ 1. The non-increasing condition only needs to be satisfied

for the infinite tail of the series. It need not be true for the first few terms as long
as it is eventually true. Let’s look at some examples.

EXAMPLE 14.38 (The Alternating Harmonic Series). Does the alternating harmonic series
∞

∑
n=1

(−1)n+1

n
converge?

SOLUTION. Use the alternating series test. Here an = 1
n . Check the two conditions.
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1. lim
n→∞

an = lim
n→∞

1
n = 0 checks.

2. 1
n+1 ≤

1
n so an+1 ≤ an for all n; the sequence is decreasing. Note: Another way

to check that the series is decreasing is to examine the derivative of the associated
function f (x). Here f (x) = 1

x , so f ′(x) = − 1
x2 < 0 for x ≥ 1 and so is decreasing.

Since the series satisfies the two hypotheses, by Theorem 14.10 the alternating
harmonic series converges despite the fact the harmonic series diverges.

EXAMPLE 14.39. Does
∞

∑
n=1

n + 1
(−3)n = −2

3
+

3
9
− 4

27
+ · · · converge?

SOLUTION. Use the alternating series test with an = n+1
3n . Check the two conditions.

1. lim
n→∞

an = lim
n→∞

n + 1
3n = lim

x→∞

x + 1
3x

l’Ho
= lim

x→∞

1
ln(3)3x = 0 checks. Here we have used the derivative rule

d
dx (ax) = ln(a)ax , where a > 0. Notice
that this rule gives the correct answer
for the derivative of the exponential
function: d

dx (e
x) = ln(e)ex = ex .

2. an+1 ≤ an ⇐⇒ n+2
3n+1 ≤ n+1

3n ⇐⇒ n + 2 ≤ 3n+1(n+1)
3n ⇐⇒ n + 2 ≤ 3n + 3 ⇐⇒

0 ≤ 2n + 1 which is always true for n ≥ 1. The sequence is decreasing. Or check by
taking the derivative of f (x) = x+1

3x .

f ′(x) =
1 · 3x − (x + 1)3x ln 3

(3x)2 =
1− (x + 1) ln 3

3x < 0

for x > 1 and so is decreasing.
Since the series satisfies the two hypotheses, by Theorem 14.10 the alternating
harmonic series converges.

EXAMPLE 14.40. Does
∞

∑
n=1

(−1)n n2

n2 + 1
= −1

3
+

4
5
− 9

10
+ · · · converge?

SOLUTION. Use the alternating series test with an = n2

n2+1 . Check the two conditions.

1. lim
n→∞

an = lim
n→∞

n2

n2 + 1
= lim

n→∞

1
1 + 1

n2

= 1 6= 0. Remember: If an alternating series
does not pass the first condition of the
Alternating Series Test, then you can
use the nth term test for divergence
to conclude that the series actually
diverges.

Since the first hypothesis is not satisfied, the alternating series test does not apply.
In this case the series diverges since the nth term does not go to 0.

EXAMPLE 14.41. Does
∞

∑
n=1

(−1)n n!
(2n)!

converge?

SOLUTION. Use the alternating series test with an = n!
(2n)! . Check the two conditions.

1. lim
n→∞

an = lim
n→∞

n!
(2n)!

= lim
n→∞

1 · 2 · · · n
1 · 2 · · · n · (n + 1) · (n + 2) · · · (2n)

= lim
n→∞

1
(n + 1) · · · (2n)

=

0.

2. an+1 ≤ an ⇐⇒ (n+1)!
(2n+2)! ≤

n!
(2n)! ⇐⇒ (n+1)!

n! ≤ (2n+2)!
(2n)! ⇐⇒ n + 1 ≤

(2n + 1)(2n + 2) which is always true for n ≥ 1. Since the series satisfies the two

hypotheses, by Theorem 14.10 the alternating series
∞

∑
n=1

(−1)n n!
(2n)!

converges.

YOU TRY IT 14.7. Determine whether these series converge or diverge. Be sure to carefully
justify your answers with an argument.

(a)
∞

∑
n=1

(−1)n+13
n + 2

(b)
∞

∑
n=1

(−2)n

3n + 1
(c)

∞

∑
n=1

(−1)n

n!
(d)

∞

∑
n=0

(−1)n 2n
n2 + 1


