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Absolute and Conditional Convergence

Sometimes series have both positive and negative terms but they are not perfectly
alternating like those in the previous section. For example

∞

∑
n=1

sin n
n2 ≈ 0.841

1
+

0.909
4

+
0.141

9
− 0.757

16
− 0.279

25
+

0.657
36

+ · · ·

is not alternating but does have both positive and negative terms.
So how do we deal with such series? The answer is to take the absolute value

of the terms. This turns the sequence into a non-negative series and now we can
apply many of our previous convergence tests. For example if we take the absolute
value of the terms in the series above, we get

∞

∑
n=1

∣∣∣∣ sin n
n2

∣∣∣∣.
Since | sin n| ≤ 1, then

0 <

∣∣∣∣ sin n
n2

∣∣∣∣ < 1
n2 .

But
∞

∑
n=1

1
n2 converges by the p-series test (p = 2 > 1), so

∞

∑
n=1

∣∣∣∣ sin n
n2

∣∣∣∣ converges

by comparison. But what about the original series
∞

∑
n=1

sin n
n2 ? The next theorem

provides the answer: The series does converge.

THEOREM 14.11 (The Absolute Convergence Test). If
∞

∑
n=1
|an| converges so does

∞

∑
n=1

an.

Proof. Given
∞

∑
n=1
|an| converges. Define a new series

∞

∑
n=1

bn, where

bn = an + |an| =

an + an = 2an, if an ≥ 0

an − an = 0, if an < 0
≥ 0.

So 0 ≤ bn = an + |an| ≤ |an|+ |an| = 2|an|. But
∞

∑
n=1

2|an| converges, hence by direct

comparison
∞

∑
n=1

bn converges. Therefore

∞

∑
n=1

an =
∞

∑
n=1

[(an + |an|)− |an|] =
∞

∑
n=1

bn − |an| =
∞

∑
n=1

bn−
∞

∑
n=1
|an|

converges since it is the difference of two convergent series.

Important Note. The converse is not true. If
∞

∑
n=1

an converges,
∞

∑
n=1
|an| may or may

not converge. For example, the alternating harmonic series
∞

∑
n=1

(−1)n

n
converges,

but if we take the absolute value of the terms, the harmonic series
∞

∑
n=1

1
n

diverges.

This leads to the following definition.
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DEFINITION 14.5.
∞

∑
n=1

an is absolutely convergent if
∞

∑
n=1
|an| converges.

∞

∑
n=1

an is conditionally convergent if
∞

∑
n=1

an converges but
∞

∑
n=1
|an| diverges.

EXAMPLE 14.42. Determine whether
∞

∑
n=1

(−1)n

3
√

n2
converges absolutely, conditionally, or

not at all.

SOLUTION. First we check absolute convergence.
∞

∑
n=1

∣∣∣∣ (−1)n

3
√

n2

∣∣∣∣ = ∞

∑
n=1

1
n2/3 is a p-series

with p = 2
3 ≤ 1. So the series of absolute values diverges. The original series is not

absolutely convergent.
Since the series is alternating and not absolutely convergent, we check for condi-

tional convergence using the alternating series test with an = 1
n2/3 . Check the two

conditions.

1. lim
n→∞

an = lim
n→∞

1
n2/3 = 0.

2. Further an+1 ≤ an because 1
(n+1)2/3 < 1

n2/3 .

Since the two conditions of the alternating series test are satisfied,
∞

∑
n=1

(−1)n

3
√

n2
is

conditionally convergent by the alternating series test.

EXAMPLE 14.43. Determine whether
∞

∑
n=1

cos n
n2 converges absolutely, conditionally, or

not at all.

SOLUTION. Notice that this series is not positive nor is it alternating since the first
few terms are approximately

∞

∑
n=1

cos n
n2 ≈ 0.540

12 − 0.416
22 − 0.990

32 +
0.284

42 + · · · .

First we check absolute convergence.
∞

∑
n=1

∣∣∣ cos n
n2

∣∣∣ looks a lot like the p-series
∞

∑
n=1

1
n2

with p = 2 > 1. We can use the direct comparison test. Since 0 ≤ | cos n| ≤ 1,

0 ≤
∣∣∣ cos n

n2

∣∣∣ ≤ 1
n2

for all n. Since the p-series
∞

∑
n=1

1
n2 converges, so does

∞

∑
n=1

∣∣∣ cos n
n2

∣∣∣ by the direct compar-

ison test (Theorem 14.6). So the series of absolute values converges. The original series
is absolutely convergent. We need not check further.

EXAMPLE 14.44. Determine whether
∞

∑
n=2

(−1)n
√

n2 − 1
converges absolutely, conditionally,

or not at all.

SOLUTION. First we check absolute convergence.
∞

∑
n=2

∣∣∣∣ (−1)n
√

n2 − 1

∣∣∣∣ = ∞

∑
n=2

1√
n2 − 1

.

Notice that 1√
n2−1

≈ 1
n . So let’s use the limit comparison test. The terms of the series

are positive and

lim
n→∞

an

bn
= lim

n→∞

1√
n2 − 1

· n
1

HPwrs
= lim

n→∞

n√
n2

= lim
n→∞

n
n
= 1 > 0.

Since the harmonic series
∞

∑
n=2

1
n

diverges (p-series with p = 1), then
∞

∑
n=2

∣∣∣∣ (−1)n
√

n2 − 1

∣∣∣∣
diverges by the limit comparison test. So the series does not converge absolutely.

Since the series is alternating and not absolutely convergent, we check for condi-
tional convergence using the alternating series test with an = 1√

n2−1
. Check the two

conditions.
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1. lim
n→∞

an = lim
n→∞

1√
n2 − 1

= 0.

2. Further an+1 ≤ an is decreasing because
1√

(n + 1)2 − 1
<

1√
n2 − 1

. (You could

also show the derivative is negative.) Since the two conditions of the alternating

series test are satisfied,
∞

∑
n=2

(−1)n
√

n2 − 1
is conditionally convergent by the alternating

series test.

EXAMPLE 14.45. Determine whether
∞

∑
n=1

(−1)n(2n4 + 7)
6n9 − 2n

converges absolutely, condi-

tionally, or not at all.

SOLUTION. First we check absolute convergence.
∞

∑
n=1

∣∣∣∣∣ (−1)n(2n4 + 7)
6n9 − 2n

∣∣∣∣∣ = ∞

∑
n=1

2n4 + 7
6n9 − 2n

.

Notice that 2n4+7
6n9−2n ≈

1
n5 . So let’s use the limit comparison test. The terms of the series

are positive and

lim
n→∞

an

bn
= lim

n→∞

2n4 + 7
6n9 − 2n

· n5

1
= lim

n→∞

2n9 + 7n5

6n9 − 2n
HPwrs
= lim

n→∞

2n9

6n9 =
1
3
> 0.

Since
∞

∑
n=1

1
n5 converges (p-series with p = 5 > 1), then

∞

∑
n=1

∣∣∣∣∣ (−1)n(2n4 + 7)
6n9 − 2n

∣∣∣∣∣ converges

by the limit comparison test. So the series converges absolutely.

EXAMPLE 14.46. Determine whether
∞

∑
n=2

(−1)n

ln n
converges absolutely, conditionally, or

not at all.

SOLUTION. First we check absolute convergence.
∞

∑
n=2

∣∣∣∣ (−1)n

ln n

∣∣∣∣ = ∞

∑
n=2

1
ln n

. We use the

direct comparison test with 1
n ln n . Notice that 0 < 1

n ln n ≤
1

ln n because n > 1. Next
∞

∑
n=2

1
n ln n

diverges (as we saw in earlier examples).1 Consequently
∞

∑
n=2

∣∣∣∣ 1
ln n

∣∣∣∣ diverges 1 To check that
∞

∑
n=2

1
n ln n

di-

verges, use the integral test and
u-substitution with u = ln x.∫ ∞

2

1
x ln x

dx = lim
b→∞

ln | ln x|
∣∣b
2 =

lim
b→∞

ln | ln b| − ln(ln 2) = +∞.

by the direct comparison test. So the series does not converge absolutely.
Since the series is alternating and not absolutely convergent, we check for condi-

tional convergence using the alternating series test with an = 1
ln n . Check the two

conditions.

1. lim
n→∞

an = lim
n→∞

1
ln n

= 0.

2. Further an is decreasing since f (x) = 1
ln x = (ln x)−1 then f ′(x) = − (ln x)−2

x < 0 for
x ≥ 2.

Since the two conditions of the alternating series test are satisfied,
∞

∑
n=2

(−1)n

ln n
is

conditionally convergent by the alternating series test.

EXAMPLE 14.47. Determine whether
∞

∑
n=1

(−1)n2n

2n
converges absolutely, conditionally,

or not at all.

SOLUTION. First we check absolute convergence.
∞

∑
n=1

∣∣∣∣ 2n

2n

∣∣∣∣ = ∞

∑
n=2

2n

2n
. Hey wait. . . does

this series diverge? Use the nth term test:

lim
n→∞

2n

2n
= lim

x→∞

2x

2x
l’Ho
= lim

x→∞

2x ln 2
2

= ∞.

Since limn→∞ an 6= 0 the series automatically diverges and cannot converge absolutely
or conditionally.
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Bonus Fact: The Ratio Test Extension

When we test for absolute convergence using the ratio test, we can say more. If
the ratio r is actually greater than 1, the series will diverge. We don’t even need to
check conditional convergence.

THEOREM 14.12 (The Ratio Test Extension). Assume that
∞

∑
n=1

an is a series with non-zero terms

and let r = lim
n→∞

∣∣∣∣ an+1
an

∣∣∣∣.
1. If r < 1, then the series

∞

∑
n=1

an converges absolutely.

2. If r > 1 (including ∞), then the series
∞

∑
n=1

an diverges.

3. If r = 1, then the test is inconclusive. The series may converge or diverge.

This is most helpful when the series diverges. It says we can check for absolute
convergence and if we find the absolute value series diverges, then the original
series diverges. We don’t have to check for conditional convergence. Huzzah!

EXAMPLE 14.48. Determine whether
∞

∑
n=1

(−1)nn!
3n converges absolutely, conditionally,

or not at all.

SOLUTION. Here’s a perfect place to use the ratio test extension because there is a
factorial.

r = lim
n→∞

∣∣∣∣∣ (−1)n+1(n + 1)!
3n+1 · 3n

(−1)nn!

∣∣∣∣∣ = lim
n→∞

∣∣∣∣n + 1
3

∣∣∣∣ = ∞.

The (original) series diverges by the ratio test extension. That was easy!! The ratio test
extension says we don’t have to check for conditional convergence.

EXAMPLE 14.49. Determine whether
∞

∑
n=1

(−1)n(n + 1)!
2nn

converges absolutely, condi-

tionally, or not at all.

SOLUTION. First we check absolute convergence using the ratio test because of the
factorial.

r = lim
n→∞

∣∣∣∣∣ (−1)n+1(n + 2)!
2n+1(n + 1)

· 2nn
(−1)n(n + 1)!

∣∣∣∣∣ = lim
n→∞

∣∣∣∣ (n + 2)n
2(n + 1)

∣∣∣∣ = lim
n→∞

∣∣∣∣n2 + 2n
2n + 2

∣∣∣∣ HPwrs
= lim

n→∞

n
2
= ∞.

The (original) series diverges by the ratio test extension.

EXAMPLE 14.50. Determine whether
∞

∑
n=1

n(−2)n

3n+1 converges absolutely, conditionally,

or not at all.

SOLUTION. Check absolute convergence using the ratio test extension.

r = lim
n→∞

∣∣∣∣∣ (n + 1)(−2)n+1

3n+2 · 3n+1

n(−2)n

∣∣∣∣∣ = lim
n→∞

∣∣∣∣2(n + 1)
3n

∣∣∣∣ HPwrs
=

2
3
< 1.

The (original) series converges absolutely by the ratio test extension.


