Assignment 12

Due Wednesday.

1. This question reviews several ideas. Suppose that $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a linear transformation. Let $\mathbf{u}=\left[\begin{array}{l}2 \\ 4\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{l}4 \\ 6\end{array}\right]$. Assume that $T(\mathbf{u})=T\left[\begin{array}{l}2 \\ 4\end{array}\right]=\left[\begin{array}{c}6 \\ -2\end{array}\right]$ and

$$
T(\mathbf{v})=T\left[\begin{array}{l}
4 \\
6
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

(a) Determine $T(3 \mathbf{u}-2 \mathbf{v})$. Avoid using matrix multiplication.

SOLUTION. $T(3 \mathbf{u}-2 \mathbf{v}) \stackrel{\text { linear }}{=} 3 T(\mathbf{u})-2 T(\mathbf{v})=3\left[\begin{array}{c}6 \\ -2\end{array}\right]-2\left[\begin{array}{l}1 \\ 1\end{array}\right]=\left[\begin{array}{c}16 \\ -8\end{array}\right]$.
(b) Determine $T\left(\mathbf{e}_{1}\right)$. Hint: Express \mathbf{e}_{1} as a linear combination of \mathbf{u} and \mathbf{v}. Then proceed as in part (a).
solution. We first need to solve
$2 x_{1}+4 x_{2}=1$
$4 x_{1}+6 x_{2}=0$ or $\left[\begin{array}{lll}2 & 4 & 1 \\ 4 & 6 & 0\end{array}\right] \sim\left[\begin{array}{ccc}2 & 4 & 1 \\ 0 & -2 & -2\end{array}\right] \sim\left[\begin{array}{ccc}2 & 0 & -3 \\ 0 & -2 & -2\end{array}\right] \sim\left[\begin{array}{ccc}1 & 0 & -\frac{3}{2} \\ 0 & 1 & 1\end{array}\right]$
So $T\left(\mathbf{e}_{1}\right)=T\left(-\frac{3}{2} \mathbf{u}+\mathbf{v}\right)=-\frac{3}{2}\left[\begin{array}{c}6 \\ -2\end{array}\right]+\left[\begin{array}{l}1 \\ 1\end{array}\right]=\left[\begin{array}{c}-8 \\ 4\end{array}\right]$
(c) Similarly determine $T\left(\mathbf{e}_{2}\right)$.

SOLUTION. This time

$$
\begin{aligned}
& 2 x_{1}+4 x_{2}=0 \\
& 4 x_{1}+6 x_{2}=1
\end{aligned} \text { or }\left[\begin{array}{lll}
2 & 4 & 0 \\
4 & 6 & 1
\end{array}\right] \sim\left[\begin{array}{ccc}
2 & 4 & 0 \\
0 & -2 & 1
\end{array}\right] \sim\left[\begin{array}{ccc}
2 & 0 & 2 \\
0 & -2 & 1
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & -\frac{1}{2}
\end{array}\right]
$$

So $T\left(\mathbf{e}_{2}\right)=T\left(\mathbf{u}-\frac{1}{2} \mathbf{v}\right)=\left[\begin{array}{c}6 \\ -2\end{array}\right]-\frac{1}{2}\left[\begin{array}{l}1 \\ 1\end{array}\right]=\left[\begin{array}{c}\frac{11}{2} \\ -\frac{5}{2}\end{array}\right]$
(d) Determine the standard matrix A for T.
solution. $A=\left[T\left(\mathbf{e}_{1}\right) T\left(\mathbf{e}_{2}\right)\right]=\left[\begin{array}{cc}-8 & \frac{11}{2} \\ 4 & -\frac{5}{2}\end{array}\right]$.
(e) Is A invertible?
solution. Yes, since $\operatorname{det} A=-2 \neq 0$ So $A^{-1}=-\frac{1}{2}\left[\begin{array}{cc}-\frac{5}{2} & -\frac{11}{2} \\ -4 & -8\end{array}\right]=\left[\begin{array}{ll}\frac{5}{4} & \frac{11}{4} \\ 2 & 4\end{array}\right]$.
(f) Read about invertible transformations on page 113-114 and give the standard matrix for the inverse transformation T^{-1}.
solution. Because A is invertible T is invertible and its standard matrix is So $A^{-1}=$ $-\frac{1}{2}\left[\begin{array}{cc}-\frac{5}{2} & -\frac{11}{2} \\ -4 & -8\end{array}\right]=\left[\begin{array}{cc}\frac{5}{4} & \frac{11}{4} \\ 2 & 4\end{array}\right]$.
(g) Determine all the vectors \mathbf{w} such that $T(\mathbf{w})=\mathbf{b}=\left[\begin{array}{l}2 \\ 0\end{array}\right]$.
solution. We need to solve $T(\mathbf{w})=\mathbf{b}$ or equivalently $A \mathbf{w}=\left[\begin{array}{l}2 \\ 0\end{array}\right]$. So

$$
\mathbf{w}=A^{-1} A \mathbf{w}=A^{-1} \mathbf{b}=\left[\begin{array}{cc}
\frac{5}{4} & \frac{11}{4} \\
2 & 4
\end{array}\right]\left[\begin{array}{l}
2 \\
0
\end{array}\right]=\left[\begin{array}{c}
\frac{5}{2} \\
4
\end{array}\right] .
$$

(h) Determine $T(\mathbf{x})=T\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$.

SOLUTION. $T\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=A\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{cc}-8 & \frac{11}{2} \\ 4 & -\frac{5}{2}\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{c}-8 x_{1}+\frac{11}{2} x_{2} \\ 4 x_{1}-\frac{5}{2} x_{2}\end{array}\right]$.
(i) Is T onto? Explain carefully citing appropriate theorems.

SOLUTION. Since the $n \times n$ matrix A is invertible, condition (a) of the Connections Theorem is true, so they all are. Therefore the transformation T is onto (condition (h)).
(j) Is T one-to-one? Explain carefully citing appropriate theorems.
SOLUTION. Since the $n \times n$ matrix A is invertible, condition (a) of the Connections Theorem is true, so they all are. Therefore the transformation T is one-to-one (condition (l)).
2. (a) Section 3.2 page $175, \# 14$. Also decide whether the matrix is invertible.

SOLUTION. First use row 4 to eliminate entries, then row 2. The determinant is zero, so not invertible.

$$
\left|\begin{array}{cccc}
-3 & -2 & 1 & -4 \\
1 & 3 & 0 & -3 \\
-3 & 4 & -2 & 8 \\
3 & -4 & 0 & 4
\end{array}\right|=\left|\begin{array}{cccc}
0 & -6 & 1 & 0 \\
1 & 3 & 0 & -3 \\
0 & 0 & -2 & 12 \\
3 & -4 & 0 & 4
\end{array}\right|=\left|\begin{array}{cccc}
0 & -6 & 1 & 0 \\
1 & 3 & 0 & -3 \\
0 & 0 & -2 & 12 \\
0 & -13 & 0 & 13
\end{array}\right|=-1\left|\begin{array}{ccc}
-6 & 1 & 0 \\
0 & -2 & 12 \\
-13 & 0 & 13
\end{array}\right|=-1\left|\begin{array}{ccc}
-6 & 1 & 0 \\
-12 & 0 & 12 \\
-13 & 0 & 13
\end{array}\right|=-1(-1)\left|\begin{array}{cc}
-12 & 12 \\
-13 & 13
\end{array}\right|=0
$$

(b) Section 3.2 page $175, \# 18,20$. Read the instructions. Use a theorem, not a calculation to determine the answers.

SOLUTION. Exercise 18: There have been two row interchanges so by Theorem 3.3 the determinant is multiplied by $(-1)^{2}=1$. The determinant is unchanged: $\operatorname{det} A=7$, the original determinant.

Exercise 20: Row 2 has been added to row 1 , so by Theorem 3.3 the determinant is unchanged: $\operatorname{det} A=7$, the original determinant.
(c) Section 3.2 page 175, \#22.

SOLUTION. Expanding along the first row,

$$
\left|\begin{array}{ccc}
5 & 0 & -1 \\
1 & -3 & -2 \\
0 & 5 & 3
\end{array}\right|=5\left|\begin{array}{cc}
-3 & -2 \\
5 & 3
\end{array}\right|-0-1\left|\begin{array}{cc}
1 & -3 \\
0 & 5
\end{array}\right|=5-5=0
$$

So the matrix is not invertible by Theorem 3.4.
(d) Section 3.2 page 175, \#26.

SOLUTION. Since there are 4 vectors in \mathbb{R}^{4}, by the Connections Theorem the vectors will be independent if the determinant of the corresponding 4×4 matrix is not zero. Expanding along the fourth column,

$$
\begin{aligned}
\left|\begin{array}{cccc}
3 & 2 & -2 & 0 \\
5 & -6 & -1 & 0 \\
-6 & 0 & 3 & 0 \\
4 & 7 & 0 & -3
\end{array}\right| & =-3\left|\begin{array}{ccc}
3 & 2 & -2 \\
5 & -6 & -1 \\
-6 & 0 & 3
\end{array}\right| \\
& =-3\left(-6\left|\begin{array}{cc}
2 & -2 \\
-6 & -1
\end{array}\right|+3\left|\begin{array}{cc}
3 & 2 \\
5 & -6
\end{array}\right|\right)=-3(-6(-14)+3(-28))=0
\end{aligned}
$$

So the columns are not independent.

