Assignment 12

Due Wednesday.

- **1.** This question reviews several ideas. Suppose that $T : \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation. Let $\mathbf{u} = \begin{bmatrix} 2\\4 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} 4\\6 \end{bmatrix}$. Assume that $T(\mathbf{u}) = T \begin{bmatrix} 2\\4 \end{bmatrix} = \begin{bmatrix} 6\\-2 \end{bmatrix}$ and $T(\mathbf{v}) = T \begin{bmatrix} 4\\6 \end{bmatrix} = \begin{bmatrix} 1\\1 \end{bmatrix}$.
 - (*a*) Determine $T(3\mathbf{u} 2\mathbf{v})$. Avoid using matrix multiplication.

SOLUTION.
$$T(3\mathbf{u} - 2\mathbf{v}) \stackrel{\text{linear}}{=} 3T(\mathbf{u}) - 2T(\mathbf{v}) = 3 \begin{bmatrix} 6\\-2 \end{bmatrix} - 2 \begin{bmatrix} 1\\1 \end{bmatrix} = \begin{bmatrix} 16\\-8 \end{bmatrix}.$$

(*b*) Determine $T(\mathbf{e}_1)$. Hint: Express \mathbf{e}_1 as a linear combination of \mathbf{u} and \mathbf{v} . Then proceed as in part (a).

SOLUTION. We first need to solve

$$2x_{1} + 4x_{2} = 1$$

$$4x_{1} + 6x_{2} = 0$$
 or $\begin{bmatrix} 2 & 4 & 1 \\ 4 & 6 & 0 \end{bmatrix} \sim \begin{bmatrix} 2 & 4 & 1 \\ 0 & -2 & -2 \end{bmatrix} \sim \begin{bmatrix} 2 & 0 & -3 \\ 0 & -2 & -2 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -\frac{3}{2} \\ 0 & 1 & 1 \end{bmatrix}$
So $T(\mathbf{e}_{1}) = T(-\frac{3}{2}\mathbf{u} + \mathbf{v}) = -\frac{3}{2} \begin{bmatrix} 6 \\ -2 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -8 \\ 4 \end{bmatrix}$

(*c*) Similarly determine $T(\mathbf{e}_2)$.

SOLUTION. This time

$$2x_{1} + 4x_{2} = 0$$

$$4x_{1} + 6x_{2} = 1$$
 or $\begin{bmatrix} 2 & 4 & 0 \\ 4 & 6 & 1 \end{bmatrix} \sim \begin{bmatrix} 2 & 4 & 0 \\ 0 & -2 & 1 \end{bmatrix} \sim \begin{bmatrix} 2 & 0 & 2 \\ 0 & -2 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -\frac{1}{2} \end{bmatrix}$
So $T(\mathbf{e}_{2}) = T(\mathbf{u} - \frac{1}{2}\mathbf{v}) = \begin{bmatrix} 6 \\ -2 \end{bmatrix} - \frac{1}{2} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{11}{2} \\ -\frac{5}{2} \end{bmatrix}$

(*d*) Determine the standard matrix *A* for *T*.

SOLUTION.
$$A = [T(\mathbf{e}_1) \ T(\mathbf{e}_2)] = \begin{bmatrix} -8 & \frac{11}{2} \\ 4 & -\frac{5}{2} \end{bmatrix}$$
.

(e) Is A invertible?

SOLUTION. Yes, since det
$$A = -2 \neq 0$$
 So $A^{-1} = -\frac{1}{2} \begin{bmatrix} -\frac{5}{2} & -\frac{11}{2} \\ -4 & -8 \end{bmatrix} = \begin{bmatrix} \frac{5}{4} & \frac{11}{4} \\ 2 & 4 \end{bmatrix}$.

(*f*) Read about invertible transformations on page 113–114 and give the standard matrix for the inverse transformation T^{-1} .

SOLUTION. Because *A* is invertible *T* is invertible and its standard matrix is So $A^{-1} = -\frac{1}{2} \begin{bmatrix} -\frac{5}{2} & -\frac{11}{2} \\ -4 & -8 \end{bmatrix} = \begin{bmatrix} \frac{5}{4} & \frac{11}{4} \\ 2 & 4 \end{bmatrix}$.

(g) Determine all the vectors **w** such that $T(\mathbf{w}) = \mathbf{b} = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$.

SOLUTION. We need to solve $T(\mathbf{w}) = \mathbf{b}$ or equivalently $A\mathbf{w} = \begin{vmatrix} 2 \\ 0 \end{vmatrix}$. So

$$\mathbf{w} = A^{-1}A\mathbf{w} = A^{-1}\mathbf{b} = \begin{bmatrix} \frac{5}{4} & \frac{11}{4} \\ 2 & 4 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \end{bmatrix} = \begin{bmatrix} \frac{5}{2} \\ 4 \end{bmatrix}.$$

Name											
Problem	Points	Score									
1	20										
2	12										
Total	32										

- (h) Determine $T(\mathbf{x}) = T \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$. SOLUTION. $T \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = A \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -8 & \frac{11}{2} \\ 4 & -\frac{5}{2} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -8x_1 + \frac{11}{2}x_2 \\ 4x_1 - \frac{5}{2}x_2 \end{bmatrix}$.
- (*i*) Is *T* onto? Explain carefully citing appropriate theorems.

SOLUTION. Since the $n \times n$ matrix *A* is invertible, condition (a) of the Connections Theorem is true, so they all are. Therefore the transformation *T* is onto (condition (h)).

(*j*) Is *T* one-to-one? Explain carefully citing appropriate theorems.

SOLUTION. Since the $n \times n$ matrix *A* is invertible, condition (a) of the Connections Theorem is true, so they all are. Therefore the transformation *T* is one-to-one (condition (l)).

2. (*a*) Section 3.2 page 175, #14. Also decide whether the matrix is invertible.

SOLUTION. First use row 4 to eliminate entries, then row 2. The determinant is zero, so not invertible.

-3	-2	1	-4		0	-6	1	0	0	-6	1	0	6	1	0	6	1	0		
1	3	0	-3		1	3	0	-3	_ 1	3	0	-3		1	12	-1 12	1	10	-1(-1) -12	12 - 0
-3	4	$^{-2}$	8	-	0	0	$^{-2}$	12	- 0	0	$^{-2}$	12	$\begin{vmatrix} -1 \\ 0 \\ 12 \end{vmatrix}$	-2	12	1 -12 12	0	12	= -1(-1) $ -13$	13 - 0
3	-4	0	4		3	-4	0	4	(-13	0	13	-13	0	13	-13	0	13	$= -1(-1) \begin{vmatrix} -12 \\ -13 \end{vmatrix}$	I

(*b*) Section 3.2 page 175, #18, 20. Read the instructions. Use a theorem, not a calculation to determine the answers.

SOLUTION. EXERCISE 18: There have been two row interchanges so by Theorem 3.3 the determinant is multiplied by $(-1)^2 = 1$. The determinant is unchanged: det A = 7, the original determinant.

EXERCISE 20: Row 2 has been added to row 1, so by Theorem 3.3 the determinant is unchanged: det A = 7, the original determinant.

(c) Section 3.2 page 175, #22.

.

SOLUTION. Expanding along the first row,

$$\begin{vmatrix} 5 & 0 & -1 \\ 1 & -3 & -2 \\ 0 & 5 & 3 \end{vmatrix} = 5 \begin{vmatrix} -3 & -2 \\ 5 & 3 \end{vmatrix} - 0 - 1 \begin{vmatrix} 1 & -3 \\ 0 & 5 \end{vmatrix} = 5 - 5 = 0.$$

So the matrix is not invertible by Theorem 3.4.

(*d*) Section 3.2 page 175, #26.

SOLUTION. Since there are 4 vectors in \mathbb{R}^4 , by the Connections Theorem the vectors will be independent if the determinant of the corresponding 4×4 matrix is not zero. Expanding along the fourth column,

$$\begin{vmatrix} 3 & 2 & -2 & 0 \\ 5 & -6 & -1 & 0 \\ -6 & 0 & 3 & 0 \\ 4 & 7 & 0 & -3 \end{vmatrix} = -3 \begin{vmatrix} 3 & 2 & -2 \\ 5 & -6 & -1 \\ -6 & 0 & 3 \end{vmatrix}$$
$$= -3 \left(-6 \begin{vmatrix} 2 & -2 \\ -6 & -1 \end{vmatrix} + 3 \begin{vmatrix} 3 & 2 \\ 5 & -6 \end{vmatrix} \right) = -3(-6(-14) + 3(-28)) = 0.$$

So the columns are not independent.