Assignment 4 (Final Version)

Due Monday in Class

1. Section 1.2, Exercises 17 and 18. Be sure to show your work and justify your answers. Review the answers to a similar question on the Day 2 Assignment.
2. Section 1.2, Exercise 20. Be sure to show your work/reasoning.

Hint: Which Theorem is helpful?

Hint: Which Theorem is helpful.
(a) A system of 5 equations in 3 unknowns that has exactly 1 solution.
(b) A system of 5 equations in 3 unknowns that has infinitely many solutions.
(c) A system of 5 equations in 3 unknowns that has exactly 2 solutions.
5. Repeat Problem 3 for the following statements.
(a) A system of 3 equations in 5 unknowns that has infinitely many solutions.
(b) A system of 3 equations in 5 unknowns that has no solutions.
(c) A system of 3 equations in 5 unknowns that has exactly 1 solution.
6. Section 1.3, Exercise 10. Easy, but important in the next section!
7. Prove part (vii) of the Algebraic Properties of \mathbb{R}^{n} Theorem (p. 27). See the solution to Practice Problem 1 of Section 1.3 and the proof of (vi) from lecture (Friday, January 29th) for examples of how such a proof should go.
8. Consider the set $H=\left\{\left[\begin{array}{c}4 \\ -4 \\ 2\end{array}\right],\left[\begin{array}{c}-8 \\ 7 \\ -1\end{array}\right],\left[\begin{array}{c}8 \\ -6 \\ -2\end{array}\right]\right\}$. Is the vector $\left[\begin{array}{c}-32 \\ 4 \\ -7\end{array}\right]$ in $\operatorname{Span}(H)$?

If it is, write it as a specific linear combination of the vectors in H.
9. Consider the set $H=\left\{\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{c}-2 \\ 3 \\ -2\end{array}\right],\left[\begin{array}{c}-6 \\ 7 \\ -5\end{array}\right]\right\}$. Is the vector $\left[\begin{array}{c}11 \\ -5 \\ 9\end{array}\right]$ in $\operatorname{Span}(H)$? If it is, write it as a specific linear combination of the vectors in H.

