Assignment 5 (Final Version)

Due Monday in Class

1. Section 1.3, Exercise 14.
2. Section 1.3, Exercise 21.
3. Section 1.3, Exercise 26.
4. Section 1.4, Exercise 12.
5. Section 1.4, Exercise 14. Show your work.
6. Section 1.4, Exercise 16. Ignore the instructions; instead, describe the set of all \mathbf{b} for which $A \mathbf{x}=\mathbf{b}$ has a solution. (Your description should be in the form of an equation involving b_{1}, b_{2}, and b_{3}). Also, give a specific example of $\mathbf{a} \mathbf{b}$ for which $A \mathbf{x}=\mathbf{b}$ does not have a solution, along with a few words of explanation.
7. Find the value(s) of h for which $\mathbf{v}=\left[\begin{array}{c}-3 \\ h \\ -5 \\ 5\end{array}\right]$ is in Span $\left\{\left[\begin{array}{c}-3 \\ -4 \\ 5 \\ -5\end{array}\right],\left[\begin{array}{c}0 \\ 2 \\ -4 \\ 2\end{array}\right],\left[\begin{array}{c}0 \\ 0 \\ 1 \\ -3\end{array}\right]\right\}$. Show your work.
8. Section 1.4, Exercise 22. Show your work/explain your reasoning.
9. Section 1.4, Exercise 18. The instructions and the matrix B are located above Exercise 17. Justify your answer using an appropriate theorem.
10. This question is designed to make you think about pivot positions in the rows and/or columns of a (coefficient) matrix A.
(a) Suppose A is a 4×4 matrix and $\mathbf{b} \in \mathbb{R}^{4}$ is a vector such that $A \mathbf{x}=\mathbf{b}$ has a unique solution. Does the equation $A \boldsymbol{x}=\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right]$ have a solution? If so, is the solution unique? Prove your answer very clearly, justifying your assertions very carefully.
(b) Suppose A is a 4×3 matrix and $\mathbf{b} \in \mathbb{R}^{4}$ is a vector such that $A \mathbf{x}=\mathbf{b}$ has a unique solution. Does the equation $A \mathbf{x}=\mathbf{c}$ have a solution for all $\mathbf{c} \in \mathbb{R}^{4}$? Prove your answer very clearly, justifying your assertions very carefully. Use an appropriate theorem.
11. Let $A=\left[\begin{array}{ccc}1 & 2 & 3 \\ 4 & 9 & 15 \\ 2 & 5 & h\end{array}\right]$ For what values of h do the columns of A span \mathbb{R}^{3} ? Be sure to show your work and justify your answer with an appropriate theorem.
