1

Assignment 5 (Final Version)

Due Monday in Class

- 1. Section 1.3, Exercise 14.
- 2. Section 1.3, Exercise 21.
- 3. Section 1.3, Exercise 26.
- 4. Section 1.4, Exercise 12.
- 5. Section 1.4, Exercise 14. Show your work.
- **6.** Section 1.4, Exercise 16. Ignore the instructions; instead, describe the set of all **b** for which $A\mathbf{x} = \mathbf{b}$ has a solution. (Your description should be in the form of an equation involving b_1 , b_2 , and b_3). Also, give a specific example of a **b** for which $A\mathbf{x} = \mathbf{b}$ does not have a solution, along with a few words of explanation.

7. Find the value(s) of *h* for which
$$\mathbf{v} = \begin{bmatrix} -3\\h\\-5\\5 \end{bmatrix}$$
 is in Span $\left\{ \begin{bmatrix} -3\\-4\\5\\-5 \end{bmatrix}, \begin{bmatrix} 0\\2\\-4\\2 \end{bmatrix}, \begin{bmatrix} 0\\0\\1\\-3 \end{bmatrix} \right\}$.

Show your work.

- 8. Section 1.4, Exercise 22. Show your work/explain your reasoning.
- **9.** Section 1.4, Exercise 18. The instructions and the matrix *B* are located above Exercise 17. Justify your answer using an appropriate theorem.
- **10.** This question is designed to make you think about pivot positions in the rows and/or columns of a (coefficient) matrix A.

(*a*) Suppose *A* is a 4 × 4 matrix and $\mathbf{b} \in \mathbb{R}^4$ is a vector such that $A\mathbf{x} = \mathbf{b}$ has a unique solution. Does the equation $A\mathbf{x} = \begin{bmatrix} 1\\2\\3\\4 \end{bmatrix}$ have a solution? If so, is the

solution unique? Prove your answer very clearly, justifying your assertions very carefully.

(*b*) Suppose *A* is a 4×3 matrix and $\mathbf{b} \in \mathbb{R}^4$ is a vector such that $A\mathbf{x} = \mathbf{b}$ has a unique solution. Does the equation $A\mathbf{x} = \mathbf{c}$ have a solution for *all* $\mathbf{c} \in \mathbb{R}^4$? Prove your answer very clearly, justifying your assertions very carefully. Use an appropriate theorem.

11. Let
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 9 & 15 \\ 2 & 5 & h \end{bmatrix}$$
 For what values of *h* do the columns of *A* span \mathbb{R}^3 ? Be sure

to show your work and justify your answer with an appropriate theorem.