Assignment 5 (Final Version)

1. Section 1.3, Exercise 14.

Solution. Form the augmented matrix and reduce.

$$
\left[\begin{array}{cccc}
1 & 0 & 5 & 2 \\
-2 & 1 & -6 & -1 \\
0 & 2 & 8 & 6
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & 0 & 5 & 2 \\
0 & 1 & 4 & 3 \\
0 & 2 & 8 & 6
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & 0 & 5 & 2 \\
0 & 1 & 4 & 3 \\
0 & 0 & 0 & 0
\end{array}\right] \quad \begin{aligned}
& x_{1}=2-5 x_{3} \\
& x_{2}=3-4 x_{3} \\
& x_{3}=\text { free }
\end{aligned}
$$

To answer the question, The EF does not have a pivot in the rightmost column, so by Theorem 2 the system is consistent. In fact, there are infinitely many solutions: Using $x_{3}=0$, we get $2 \mathbf{a}_{1}+3 \mathbf{a}_{2}=\mathbf{b}$.
2. Section 1.3, Exercise 21.

Solution. Form the augmented matrix and reduce.

$$
\left[\begin{array}{ccc}
2 & 2 & h \\
-1 & 1 & k
\end{array}\right] \sim\left[\begin{array}{ccc}
2 & 2 & h \\
0 & \boxed{2} & \frac{h}{2}+k
\end{array}\right]
$$

The EF does not have a pivot in the rightmost column, so by Theorem 2 the system is consistent and so $\left[\begin{array}{l}h \\ k\end{array}\right] \in \operatorname{Span}\{\mathbf{u}, \mathbf{v}\}$.

Name		
Problem	Points	Score
1	6	
2	6	
3	10	
4	8	
5	6	
6	8	
7	8	
8	6	
9	10	
10	12	
11	6	
Total	86	

Another Method: By Theorem 4, there is a pivot in every row of the coefficient matrix, so the system is always consistent for any $\mathbf{b}=\left[\begin{array}{l}h \\ k\end{array}\right]$.
3. Section 1.3, Exercise 26.

Solution. (a) Form the augmented matrix and reduce.

$$
\left[\begin{array}{cccc}
2 & 0 & 6 & 10 \\
-1 & 8 & 5 & 3 \\
1 & -2 & 1 & 7
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & 0 & 3 & 5 \\
0 & 8 & 8 & 8 \\
0 & -2 & -2 & 2
\end{array}\right] \sim\left[\begin{array}{cccc}
\boxed{1} & 0 & 3 & 5 \\
0 & \boxed{1} & 1 & 1 \\
0 & 0 & 0 & 4
\end{array}\right]
$$

The EF has a pivot in the rightmost column, so by Theorem 2 the system is inconsistent and so $\mathbf{b} \notin W=\operatorname{Span}\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}\right\}$.
(b) The second column of A is in W, because it can be written as the following combination of the columns of A (no need to reduce!):

$$
\left[\begin{array}{l}
0 \\
8 \\
2
\end{array}\right]=0\left[\begin{array}{c}
2 \\
-1 \\
1
\end{array}\right]+1\left[\begin{array}{l}
0 \\
8 \\
2
\end{array}\right]+0\left[\begin{array}{l}
6 \\
5 \\
1
\end{array}\right]
$$

4. Section 1.4, Exercise 12.

Solution. Form the augmented matrix corresponding to $A \mathbf{x}=\mathbf{b}$, and then reduce to RREF to find the solution.

$$
\left[\begin{array}{cccc}
1 & 2 & -1 & 1 \\
-3 & -4 & 2 & 2 \\
5 & 2 & 3 & -3
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & 2 & -1 & 1 \\
0 & 2 & -1 & 5 \\
0 & -8 & 8 & -8
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & 2 & -1 & 1 \\
0 & 1 & -1 & 1 \\
0 & 0 & 1 & 3
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & 0 & 0 & -4 \\
0 & 1 & 0 & 4 \\
0 & 0 & 1 & 3
\end{array}\right]
$$

So writing the solution as a vector, we get

$$
\mathbf{x}=\left[\begin{array}{c}
-4 \\
4 \\
3
\end{array}\right] \text { and }-4\left[\begin{array}{c}
1 \\
-3 \\
5
\end{array}\right]+4\left[\begin{array}{c}
2 \\
-4 \\
2
\end{array}\right]+3\left[\begin{array}{c}
-1 \\
2 \\
3
\end{array}\right]=\left[\begin{array}{c}
1 \\
2 \\
-3
\end{array}\right] . \checkmark
$$

5. Section 1.4, Exercise 14. Show your work.

Solution. By Theorem 3, \mathbf{u} is in the subset spanned by the columns of A only if the corresponding matrix equation $A \mathbf{x}=\mathbf{u}$ has a solution. So row reduce $[A \mathbf{u}]$.

$$
\left[\begin{array}{cccc}
2 & 5 & -1 & 4 \\
0 & 1 & -1 & -1 \\
1 & 2 & 0 & 4
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & 2 & 0 & 4 \\
0 & 1 & -1 & -1 \\
0 & 1 & -1 & -4
\end{array}\right] \sim\left[\begin{array}{cccc}
\boxed{1} & 2 & 0 & 4 \\
0 & 1 & -1 & -1 \\
0 & 0 & 0 & \boxed{-3}
\end{array}\right]=E F .
$$

By Theorem 2, since there is a pivot in the rightmost column, the system $A \mathbf{x}=\mathbf{u}$ is inconsistent. By Theorem 3, \mathbf{u} is not in the span of the columns of A.

* NOTE: Theorem 4 does not apply. We are not asking "Is $A \mathbf{x}=\mathbf{b}$ " consistent

FOR ALL \mathbf{b}. We are asking whether $A \mathbf{x}=\mathbf{u}$ has a solution for a particular \mathbf{u}. Sometimes systems are consistent for SOME \mathbf{b}, but not other for others when there are NOT pivots in every row of the coefficient matrix A.
6. Section 1.4, Exercise 16. Ignore the instructions; instead, describe the set of all \mathbf{b} for which $A \mathbf{x}=\mathbf{b}$ has a solution. (Your description should be in the form of an equation involving b_{1}, b_{2}, and b_{3}). Also, give a specific example of $\mathbf{a} \mathbf{b}$ for which $A \mathbf{x}=\mathbf{b}$ does not have a solution, along with a few words of explanation.

Solution. By Theorem 2, the matrix equation $A \mathbf{x}=\mathbf{b}$ has a solution when we reduce $[A \mathbf{b}]$ and there is no pivot in the final column.

$$
\left[\begin{array}{cccc}
1 & -2 & -1 & b_{1} \\
-2 & 2 & 0 & b_{2} \\
4 & -1 & 3 & b_{3}
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & -2 & -1 & b_{1} \\
0 & -2 & -2 & b_{2}+2 b_{1} \\
0 & 7 & 7 & b_{3}-4 b_{1}
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & -2 & -1 & b_{1} \\
0 & -2 & -2 & b_{2}+2 b_{1} \\
0 & 7 & 7 & b_{3}-4 b_{1}
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & -2 & -1 & b_{1} \\
0 & -2 & -2 & b_{2}+2 b_{1} \\
0 & 0 & 0 & 3 b_{1}+3.5 b_{2}+b_{3}
\end{array}\right]=E F .
$$

By Theorem 2, for the system to consistent there can be no pivot in the final column.
So we need $3 b_{1}+3.5 b_{2}+b_{3}=0$. A nicer way to write this is $6 b_{1}+7 b_{2}+2 b_{3}=0$.
To create a specific \mathbf{b} so that $A \mathbf{x}=\mathbf{b}$ has no solution, we just need to choose b_{1}, b_{2}, and b_{3} so that $6 b_{1}+7 b_{2}+2 b_{3} \neq 0$. A simple example would be $b_{1}=0, b_{2}=0$, and $b_{3}=1$. Then $6 b_{1}+7 b_{2}+2 b_{3}=2 \neq 0$. Substituting into the reduction above, we find

$$
\left[\begin{array}{cccc}
1 & -2 & -1 & 0 \\
-2 & 2 & 0 & 0 \\
4 & -1 & 3 & 1
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & -2 & -1 & 0 \\
0 & -2 & -2 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]=E F .
$$

The pivot in the final column means the system is not consistent by Theorem 2.
7. Find the value(s) of h for which $\mathbf{v}=\left[\begin{array}{c}-3 \\ h \\ -5 \\ 5\end{array}\right]$ is in Span $\left\{\left[\begin{array}{c}-3 \\ -4 \\ 5 \\ -5\end{array}\right],\left[\begin{array}{c}0 \\ 2 \\ -4 \\ 2\end{array}\right],\left[\begin{array}{c}0 \\ 0 \\ 1 \\ -3\end{array}\right]\right\}$.

Show your work.
Solution. By Theorem 3, \mathbf{v} is in the span of the given vectors only if the matrix equation $A \mathbf{x}=\mathbf{v}$ has a solution (no pivot in the final column). Form the augmented matrix and reduce to EF

$$
\left[\begin{array}{cccc}
-3 & 0 & 0 & -3 \\
-4 & 2 & 0 & h \\
5 & -4 & 1 & -5 \\
-5 & 2 & -3 & 5
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & 0 & 0 & 1 \\
0 & 2 & 0 & h+4 \\
0 & -4 & 1 & -10 \\
0 & 2 & -3 & 10
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & 0 & 0 & 1 \\
0 & 2 & 0 & h+4 \\
0 & 0 & 1 & 2 h-2 \\
0 & 0 & -3 & 6-h
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & 0 & 0 & 1 \\
0 & 2 & 0 & h+4 \\
0 & 0 & 1 & 2 h-2 \\
0 & 0 & 0 & 5 h
\end{array}\right]=E F .
$$

By Theorem 2, for the system to consistent there can be no pivot in the final column.
So we need $5 h=0$, or $h=0$.
8. Section 1.4, Exercise 22. Show your work/explain your reasoning.

Solution. By Theorem $4,\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ span \mathbb{R}^{3} if the matrix $A=\left[\mathbf{v}_{1} \mathbf{v}_{2} \mathbf{v}_{3}\right]$ has a pivot in every row. So reduce A to EF. (You do not need to go to all the way to RREF to determine where the pivots are located. But you must go to at least EF.)

$$
\left[\begin{array}{ccc}
0 & 0 & 4 \\
0 & -3 & -2 \\
-3 & 9 & -6
\end{array}\right] \sim\left[\begin{array}{ccc}
{[-3} & 9 & -6 \\
0 & \boxed{-3} & -2 \\
0 & 0 & 4
\end{array}\right]=E F
$$

By Theorem 4, since there is a pivot in every row, $\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}=\mathbb{R}^{3}$.
NOTE: It really does not make sense to try to use Theorem 2 here. We don't have an augmented matrix.
9. Section 1.4, Exercise 18. The instructions and the matrix B are located above Exercise 17. Justify your answer using an appropriate theorem.
Solution. (1) By Theorem 4, every vector in \mathbb{R}^{4} is a linear combination of the columns of B if B has a pivot in every row. So reduce B to EF.

$$
\left[\begin{array}{cccc}
1 & 4 & 1 & 2 \\
0 & 1 & 3 & -4 \\
0 & 2 & 6 & 7 \\
2 & 9 & 5 & -7
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & 4 & 1 & 2 \\
0 & 1 & 3 & -4 \\
0 & 2 & 6 & 7 \\
0 & 1 & 3 & -11
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & 4 & 1 & 2 \\
0 & 1 & 3 & -4 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & -7
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & 4 & 1 & 2 \\
0 & 1 & 3 & -4 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]=E F .
$$

There is no pivot in the final row, so by Theorem 4 , every vector in \mathbb{R}^{4} is NOT a linear combination of the columns of B.
(2) The columns of B do not span \mathbb{R}^{3}. The columns of B are vectors in \mathbb{R}^{4} because they have four rows. vectors in \mathbb{R}^{3} have only three rows. So the columns of B are not even in the set \mathbb{R}^{4}.
10. This question is designed to make you think about pivot positions in the rows and/or columns of a (coefficient) matrix A.
(a) Suppose A is a 4×4 matrix and $\mathbf{b} \in \mathbb{R}^{4}$ is a vector such that $A \mathbf{x}=\mathbf{b}$ has a unique solution. Does the equation $A \boldsymbol{x}=\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right]$ have a solution? If so, is the solution unique? Prove your answer very clearly, justifying your assertions very carefully.
Solution. Let A be a 4×4 matrix and $\mathbf{b} \in \mathbb{R}^{4}$ is a vector such that $A \mathbf{x}=\mathbf{b}$ has a unique solution. Then by Theorem 2, the augmented matrix $[A b]$ has no pivot in the last column AND it has no free variables. So the coefficient matrix A has a pivot in every COLUMN. Since A has four columns, A has four pivots. Since A also has four rows, A has pivot in every ROW. Now by Theorem 4 , the equation $A \mathbf{x}=\mathbf{c}$ has a solution for all $\mathbf{b} \in \mathbb{R}^{4}$, including $\mathbf{b}=\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right]$. The solution will be unique because A has a pivot in every column.
(b) Suppose A is a 4×3 matrix and $\mathbf{b} \in \mathbb{R}^{4}$ is a vector such that $A \mathbf{x}=\mathbf{b}$ has a unique solution. Does the equation $A \mathbf{x}=\mathbf{c}$ have a solution for all $\mathbf{c} \in \mathbb{R}^{4}$? Prove your answer very clearly, justifying your assertions very carefully. Use an appropriate theorem.

Solution. Quick proof: Let A be a 4×3 matrix. Since A has 4 rows, but only 3 columns, A has a maximum of 3 pivots. So A does not have a pivot in every row. By Theorem $4, A \mathbf{x}=\mathbf{c}$ does not have a solution for all $\mathbf{c} \in \mathbb{R}^{4}$.

Solution. Another proof like part (a): Let A be a 4×3 matrix and $\mathbf{b} \in \mathbb{R}^{4}$ is a vector such that $A \mathbf{x}=\mathbf{b}$ has a unique solution. Then by Theorem 2 , the augmented matrix $[A b]$ has no pivot in the last column AND it has no free variables. So the coefficient matrix A has a pivot in every COLUMN. Since A has three columns, A has three pivots. Since A also has four rows, A DOES NOT HAVE a pivot in every ROW. Now by Theorem 4, the equation $A \mathbf{x}=\mathbf{c}$ does not always have a solution for every $\mathrm{c} \in \mathbb{R}^{4}$.
11. Let $A=\left[\begin{array}{ccc}1 & 2 & 3 \\ 4 & 9 & 15 \\ 2 & 5 & h\end{array}\right]$ For what values of h do the columns of A span \mathbb{R}^{3} ? Be sure to show your work and justify your answer with an appropriate theorem.
Solution. (1) By Theorem 4, the columns of $A \operatorname{span} \mathbb{R}^{3}$ if A has a pivot in every row. So reduce A to EF.

$$
A=\left[\begin{array}{ccc}
1 & 2 & 3 \\
4 & 9 & 15 \\
2 & 5 & h
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 2 & 3 \\
0 & 1 & 3 \\
0 & 1 & h-6
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 2 & 3 \\
0 & 1 & 3 \\
0 & 0 & h-9
\end{array}\right]=E F .
$$

To ensure a pivot in every row, we need $h-9 \neq 0$. By Theorem 4 , for all values of h except 9 , the columns of A span \mathbb{R}^{3}.

