Assignment 5 (Final Version)

1. Section 1.3, Exercise 14.

Solution. Form the augmented matrix and reduce.

1	0	5	2		1	0	5	2		[1	0	5	2]	$x_1 = 2 - 5x_3$
-2	1	-6	-1	\sim	0	1	4	3	\sim	0	1	4	3	$x_2 = 3 - 4x_3$
0	2	8	6		0	2	8	6		0	0	0	0	$x_3 = \text{free}$

To answer the question, The EF does not have a pivot in the rightmost column, so by Theorem 2 the system is consistent. In fact, there are infinitely many solutions: Using $x_3 = 0$, we get $2\mathbf{a}_1 + 3\mathbf{a}_2 = \mathbf{b}$.

2. Section 1.3, Exercise 21.

Solution. Form the augmented matrix and reduce.

2	2	h	• /	2	2	h
1	1	k		0	2	$\left\lfloor \frac{h}{2} + k \right\rfloor$

The EF does not have a pivot in the rightmost column, so by Theorem 2 the system is consistent and so $\begin{bmatrix} h \\ k \end{bmatrix} \in \text{Span} \{\mathbf{u}, \mathbf{v}\}.$ Another Method: By Theorem 4, there is a pivot in every **row** of the **coefficient**

matrix, so the system is always consistent for any $\mathbf{b} = \begin{bmatrix} h \\ k \end{bmatrix}$.

3. Section 1.3, Exercise 26.

Solution. (a) Form the augmented matrix and reduce.

2	0	6	10		1	0	3	5		1	0	3	5]
-1	8	5	3	\sim	0	8	8	8	\sim	0	1	1	1
1	-2	1	7		0	-2	-2	2		0	0	0	4

The EF has a pivot in the rightmost column, so by Theorem 2 the system is inconsistent and so $\mathbf{b} \notin W = \text{Span} \{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3\}$.

(b) The second column of *A* is in *W*, because it can be written as the following combination of the columns of *A* (no need to reduce!):

$$\begin{bmatrix} 0 \\ 8 \\ 2 \end{bmatrix} = 0 \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix} + 1 \begin{bmatrix} 0 \\ 8 \\ 2 \end{bmatrix} + 0 \begin{bmatrix} 6 \\ 5 \\ 1 \end{bmatrix}.$$

4. Section 1.4, Exercise 12.

Solution. Form the augmented matrix corresponding to $A\mathbf{x} = \mathbf{b}$, and then reduce to RREF to find the solution.

1	2	-1	1		[1	2	-1	1		[1	2	-1	1		[1	0	0	-4
-3	-4	2	2	\sim	0	2	-1	5	\sim	0	1	-1	1	\sim	0	1	0	4
5	2	3	-3		0	-8	8	-8		0	0	1	3		0	0	1	3

So writing the solution as a vector, we get

$$\mathbf{x} = \begin{bmatrix} -4\\4\\3 \end{bmatrix} \text{ and } -4\begin{bmatrix} 1\\-3\\5 \end{bmatrix} + 4\begin{bmatrix} 2\\-4\\2 \end{bmatrix} + 3\begin{bmatrix} -1\\2\\3 \end{bmatrix} = \begin{bmatrix} 1\\2\\-3 \end{bmatrix}.\checkmark$$

Name												
Problem	Points	Score										
1	6											
2	6											
3	10											
4	8											
5	6											
6	8											
7	8											
8	6											
9	10											
10	12											
11	6											
Total	86											

1

5. Section 1.4, Exercise 14. Show your work.

Solution. By Theorem 3, **u** is in the subset spanned by the columns of *A* only if the corresponding matrix equation $A\mathbf{x} = \mathbf{u}$ has a solution. So row reduce $[A \mathbf{u}]$.

$$\begin{bmatrix} 2 & 5 & -1 & 4 \\ 0 & 1 & -1 & -1 \\ 1 & 2 & 0 & 4 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 0 & 4 \\ 0 & 1 & -1 & -1 \\ 0 & 1 & -1 & -4 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 0 & 4 \\ 0 & 1 & -1 & -1 \\ 0 & 0 & 0 & -3 \end{bmatrix} = EF.$$

By Theorem 2, since there is a pivot in the rightmost column, the system $A\mathbf{x} = \mathbf{u}$ is inconsistent. By Theorem 3, \mathbf{u} is not in the span of the columns of *A*.

NOTE: Theorem 4 does not apply. We are not asking "Is $A\mathbf{x} = \mathbf{b}$ " consistent FOR ALL **b**. We are asking whether $A\mathbf{x} = \mathbf{u}$ has a solution for a particular **u**. Sometimes systems are consistent for SOME **b**, but not other for others when there are NOT pivots in every row of the coefficient matrix *A*.

6. Section 1.4, Exercise 16. Ignore the instructions; instead, describe the set of all **b** for which $A\mathbf{x} = \mathbf{b}$ has a solution. (Your description should be in the form of an equation involving b_1 , b_2 , and b_3). Also, give a specific example of a **b** for which $A\mathbf{x} = \mathbf{b}$ does not have a solution, along with a few words of explanation.

Solution. By Theorem 2, the matrix equation $A\mathbf{x} = \mathbf{b}$ has a solution when we reduce $[A \mathbf{b}]$ and there is no pivot in the final column.

$$\begin{bmatrix} 1 & -2 & -1 & b_1 \\ -2 & 2 & 0 & b_2 \\ 4 & -1 & 3 & b_3 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & -1 & b_1 \\ 0 & -2 & -2 & b_2 + 2b_1 \\ 0 & 7 & 7 & b_3 - 4b_1 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & -1 & b_1 \\ 0 & -2 & -2 & b_2 + 2b_1 \\ 0 & 7 & 7 & b_3 - 4b_1 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & -1 & b_1 \\ 0 & -2 & -2 & b_2 + 2b_1 \\ 0 & 0 & 0 & 3b_1 + 3.5b_2 + b_3 \end{bmatrix} = EF.$$

By Theorem 2, for the system to consistent there can be no pivot in the final column.

So we need $3b_1 + 3.5b_2 + b_3 = 0$. A nicer way to write this is $6b_1 + 7b_2 + 2b_3 = 0$.

To create a specific **b** so that $A\mathbf{x} = \mathbf{b}$ has no solution, we just need to choose b_1 , b_2 , and b_3 so that $6b_1 + 7b_2 + 2b_3 \neq 0$. A simple example would be $b_1 = 0$, $b_2 = 0$, and $b_3 = 1$. Then $6b_1 + 7b_2 + 2b_3 = 2 \neq 0$. Substituting into the reduction above, we find

$$\begin{bmatrix} 1 & -2 & -1 & 0 \\ -2 & 2 & 0 & 0 \\ 4 & -1 & 3 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & -1 & 0 \\ 0 & -2 & -2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = EF.$$

The pivot in the final column means the system is not consistent by Theorem 2.

7. Find the value(s) of *h* for which
$$\mathbf{v} = \begin{bmatrix} -3\\h\\-5\\5 \end{bmatrix}$$
 is in Span $\left\{ \begin{bmatrix} -3\\-4\\5\\-5 \end{bmatrix}, \begin{bmatrix} 0\\2\\-4\\2 \end{bmatrix}, \begin{bmatrix} 0\\0\\1\\-3 \end{bmatrix} \right\}$.

Show your work.

Solution. By Theorem 3, **v** is in the span of the given vectors only if the matrix equation $A\mathbf{x} = \mathbf{v}$ has a solution (no pivot in the final column). Form the augmented matrix and reduce to EF

$$\begin{bmatrix} -3 & 0 & 0 & -3 \\ -4 & 2 & 0 & h \\ 5 & -4 & 1 & -5 \\ -5 & 2 & -3 & 5 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 2 & 0 & h+4 \\ 0 & -4 & 1 & -10 \\ 0 & 2 & -3 & 10 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 2 & 0 & h+4 \\ 0 & 0 & 1 & 2h-2 \\ 0 & 0 & -3 & 6-h \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 2 & 0 & h+4 \\ 0 & 0 & 1 & 2h-2 \\ 0 & 0 & 0 & 5h \end{bmatrix} = EF.$$

By Theorem 2, for the system to consistent there can be no pivot in the final column. So we need 5h = 0, or h = 0.

3

8. Section 1.4, Exercise 22. Show your work/explain your reasoning.

Solution. By Theorem 4, $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ span \mathbb{R}^3 if the matrix $A = [\mathbf{v}_1 \mathbf{v}_2 \mathbf{v}_3]$ has a pivot in every row. So reduce *A* to EF. (You do not need to go to all the way to RREF to determine where the pivots are located. But you must go to at least EF.)

$$\begin{bmatrix} 0 & 0 & 4 \\ 0 & -3 & -2 \\ -3 & 9 & -6 \end{bmatrix} \sim \begin{bmatrix} -3 & 9 & -6 \\ 0 & -3 & -2 \\ 0 & 0 & 4 \end{bmatrix} = EF.$$

By Theorem 4, since there is a pivot in every row, Span $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\} = \mathbb{R}^3$.

NOTE: It really does not make sense to try to use Theorem 2 here. We don't have an augmented matrix.

9. Section 1.4, Exercise 18. The instructions and the matrix *B* are located above Exercise 17. Justify your answer using an appropriate theorem.

Solution. (1) By Theorem 4, every vector in \mathbb{R}^4 is a linear combination of the columns of *B* if *B* has a pivot in every row. So reduce *B* to EF.

1	4	1	2]	[1	4	1	2]	[1	4	1	2	[1	4	1	2	
0	1	3	-4		0	1	3	-4		0	1	3	-4		0	1	3	-4	_ FF
0	2	6	7	\sim	0	2	6	7	$ \sim$	0	0	0	1	\sim	0	0	0	1	-Lr.
2	9	5	-7		0	1	3	-11		0	0	0	-7		0	0	0	0	

There is no pivot in the final row, so by Theorem 4, every vector in \mathbb{R}^4 is NOT a linear combination of the columns of *B*.

(2) The columns of *B* do not span \mathbb{R}^3 . The columns of *B* are vectors in \mathbb{R}^4 because they have four rows. vectors in \mathbb{R}^3 have only three rows. So the columns of *B* are not even in the set \mathbb{R}^4 .

10. This question is designed to make you think about pivot positions in the rows and/or columns of a (coefficient) matrix A.

(*a*) Suppose *A* is a 4 × 4 matrix and
$$\mathbf{b} \in \mathbb{R}^4$$
 is a vector such that $A\mathbf{x} = \mathbf{b}$ has a unique solution. Does the equation $A\mathbf{x} = \begin{bmatrix} 1\\2\\3\\4 \end{bmatrix}$ have a solution? If so, is the

solution unique? Prove your answer very clearly, justifying your assertions very carefully.

Solution. Let *A* be a 4×4 matrix and $\mathbf{b} \in \mathbb{R}^4$ is a vector such that $A\mathbf{x} = \mathbf{b}$ has a unique solution. Then by Theorem 2, the augmented matrix $[A \ b]$ has no pivot in the last column AND it has no free variables. So the *coefficient matrix A* has a pivot in every COLUMN. Since *A* has four columns, *A* has four pivots. Since *A* also has four rows, *A* has pivot in every ROW. Now by Theorem 4, the equation $A\mathbf{x} = \mathbf{c}$ has

a solution for all
$$\mathbf{b} \in \mathbb{R}^4$$
, including $\mathbf{b} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$. The solution will be unique because A

Γ1]

has a pivot in every column.

(*b*) Suppose *A* is a 4×3 matrix and $\mathbf{b} \in \mathbb{R}^4$ is a vector such that $A\mathbf{x} = \mathbf{b}$ has a unique solution. Does the equation $A\mathbf{x} = \mathbf{c}$ have a solution for *all* $\mathbf{c} \in \mathbb{R}^4$? Prove your answer very clearly, justifying your assertions very carefully. Use an appropriate theorem.

Strategy: Use Theorem 2 to get a pivot in every COLUMN of *A*. Then use the size of *A* to get a pivot in every ROW. Then use Theorem 4. **Solution.** Quick proof: Let *A* be a 4×3 matrix. Since *A* has 4 rows, but only 3 columns, *A* has a maximum of 3 pivots. So *A* does not have a pivot in every row. By Theorem 4, $A\mathbf{x} = \mathbf{c}$ does not have a solution for all $\mathbf{c} \in \mathbb{R}^4$.

Solution. Another proof like part (a): Let *A* be a 4×3 matrix and $\mathbf{b} \in \mathbb{R}^4$ is a vector such that $A\mathbf{x} = \mathbf{b}$ has a unique solution. Then by Theorem 2, the augmented matrix $[A \ b]$ has no pivot in the last column AND it has no free variables. So the *coefficient matrix A* has a pivot in every COLUMN. Since *A* has three columns, *A* has three pivots. Since *A* also has four rows, *A* DOES NOT HAVE a pivot in every ROW. Now by Theorem 4, the equation $A\mathbf{x} = \mathbf{c}$ does not always have a solution for *every* $\mathbf{c} \in \mathbb{R}^4$.

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 9 & 15 \end{bmatrix} \mathbf{F}$$

11. Let $A = \begin{bmatrix} 4 & 9 & 15 \\ 2 & 5 & h \end{bmatrix}$ For what values of *h* do the columns of *A* span \mathbb{R}^3 ? Be sure

to show your work and justify your answer with an appropriate theorem.

Solution. (1) By Theorem 4, the columns of *A* span \mathbb{R}^3 if *A* has a pivot in every row. So reduce *A* to EF.

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 9 & 15 \\ 2 & 5 & h \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 3 \\ 0 & 1 & h-6 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 3 \\ 0 & 0 & h-9 \end{bmatrix} = EF$$

To ensure a pivot in every row, we need $h - 9 \neq 0$. By Theorem 4, for all values of h except 9, the columns of A span \mathbb{R}^3 .