SPRING, 2016. MATH 204 (MITCHELL)

Assignment 6 (Part 1)

Due Wednesday, February 10th in Class

- **1.** Practice writing proofs. I wanted to have you prove $A(c\mathbf{u}) = c(A\mathbf{u})$, but the proof is done in the text on page 39. Make sure you read it. Instead prove the following two facts.
 - (*a*) Use the definition of scalar multiplication of vectors to prove: If $\mathbf{v} \in \mathbb{R}^n$, then $0\mathbf{v} = \mathbf{0}_n$, where the 0 on the left a scalar 0 and $\mathbf{0}_n$ on the right is the zero vector in \mathbb{R}^n .
 - (*b*) Use part(a) and the DEFINITION of matrix-vector multiplication as a linear combination of the columns of *A* to prove: If *A* is an *m* × *n* matrix, then *A***0**_n = **0**_n, where **0**_n on the left side of the equation is in ℝⁿ and **0**_m on the right side is in ℝ^m.
- **2.** Section 1.5, Exercise 8. Be careful. You are given the *coefficient* matrix, not the augmented matrix for homogeneous system $A\mathbf{x} = \mathbf{0}$.
- **3.** (*a*) Describe all solutions of the **homogeneous** system below on the left in parametric vector form. What type of geometric set does it form in \mathbb{R}^4 ?

$x_1 + 3x_2 - 3x_3 + 7x_4 = 0$	$x_1 + 3x_2 - 3x_3 + 7x_4 = 1$
$x_2 - 4x_3 + 5x_4 = 0$	$x_2 - 4x_3 + 5x_4 = 2$
$-2x_1 - 8x_2 + 14x_3 - 24x_4 = 0$	$-2x_1 - 8x_2 + 14x_3 - 24x_4 = -6$

- (b) Describe all solutions of the non-homogeneous system above on the right.Describe the geometry of the solution set compared to the solution set of part (a).
- **4.** Answer each of the following. These questions make you think about Theorems 1.2 and 1.4 and about what we called Fact 2 in Friday's class.
 - (*a*) Suppose A is a 5×5 matrix with 4 pivot positions.
- 1. Must the equation $A\mathbf{x} = \mathbf{0}$ have a nontrivial solution?
- 2. Must the equation $A\mathbf{x} = \mathbf{b}$ have a solution for EVERY $\mathbf{b} \in \mathbb{R}^5$?
- (*b*) Suppose A is a 5×4 matrix with 4 pivot positions.
- 1. Must the equation $A\mathbf{x} = \mathbf{0}$ have a nontrivial solution?
- 2. Must the equation $A\mathbf{x} = \mathbf{b}$ have a solution for EVERY $\mathbf{b} \in \mathbb{R}^5$?
- (c) Suppose A is a 4×5 matrix with 4 pivot positions.
- 1. Must the equation $A\mathbf{x} = \mathbf{0}$ have a nontrivial solution?
- 2. Must the equation $A\mathbf{x} = \mathbf{b}$ have a solution for EVERY $\mathbf{b} \in \mathbb{R}^4$?
- **5.** Let $A = [\mathbf{a}_1 \cdots \mathbf{a}_n]$ and $B = [\mathbf{b}_1 \cdots \mathbf{b}_n]$ both be $m \times n$ matrices. We define the **matrix sum** of *A* and *B* by adding the matrices column by column. That is,

$$A+B=\left[(\mathbf{a}_1+\mathbf{b}_1)\cdots(\mathbf{a}_n+\mathbf{b}_n)\right].$$

Prove that matrix addition is commutative, that is, A + B = B + A, by using appropriate an vector property of \mathbb{R}^{m} .

6. I will add additional problems on Tuesday or Wednesday that will be due Friday.

Note: This is usually written as $0\mathbf{v} = \mathbf{0}$, without the subscript.

Note: This is usually written as $A\mathbf{0} = 0$ without the subscripts.