1

Assignment 6 (Part 1)

- **1.** Practice writing proofs.
 - (*a*) Use the definition of scalar multiplication of vectors to prove: If $\mathbf{v} \in \mathbb{R}^n$, then $0\mathbf{v} = \mathbf{0}_n$, where the 0 on the left a scalar 0 and $\mathbf{0}_n$ on the right is the zero vector in \mathbb{R}^n .
 - (*b*) Use part(a) and the DEFINITION of matrix-vector multiplication as a linear combination of the columns of *A* to prove: If *A* is an $m \times n$ matrix, then $A\mathbf{0}_n = \mathbf{0}_m$, where $\mathbf{0}_n$ on the left side of the equation is in \mathbb{R}^n and $\mathbf{0}_m$ on the right side is in \mathbb{R}^m .

Proof. Let
$$\mathbf{v} = \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix} \in \mathbb{R}^n$$
. Then $0\mathbf{v} = 0\begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix} = \begin{bmatrix} 0v_1 \\ \vdots \\ 0v_n \end{bmatrix} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix} = \mathbf{0}$.

Proof. Let $A = [\mathbf{a}_1 \dots \mathbf{a}_n]$ be an $m \times n$ matrix. Then by definition of matrix-vector multiplication

$$A\mathbf{0}_n = [\mathbf{a}_1 \dots \mathbf{a}_n] \begin{bmatrix} 0\\ \vdots\\ 0 \end{bmatrix} = 0\mathbf{a}_1 + \dots + 0\mathbf{a}_n \stackrel{\text{Part (a)}}{=} \mathbf{0} + \dots + \mathbf{0} = \mathbf{0}.$$

Note: This is usually written as $0\mathbf{v} = \mathbf{0}$, without the subscript.

Note: This is usually written as $A\mathbf{0} = 0$ without the subscripts.

Name		
Problem	Points	Score
1	6	
2	7	
3	14	
4	24	
5	4	
Total	55	

2. Section 1.5, Exercise 8. Be careful. You are given the *coefficient* matrix, not the augmented matrix for homogeneous system $A\mathbf{x} = \mathbf{0}$.

Solution. Reduce the corresponding augmented matrix to RREF not just EF

		$x_1 \qquad = 2x_3 + 7x_4$
$\begin{bmatrix} 1 & -3 & -8 & 5 & 0 \end{bmatrix}$	$\begin{bmatrix} 1 & 0 & -2 & -7 & 0 \end{bmatrix}$	$x_2 = -2x_3 + 4x_4$
$\begin{bmatrix} 1 & -3 & -8 & 5 & 0 \\ 0 & 1 & 2 & -4 & 0 \end{bmatrix} \sim$	$\begin{bmatrix} 0 & 1 & 2 & -4 & 0 \end{bmatrix}$	x_3 = free
		$x_4 = $ free

So the general solution is

$$\mathbf{x} = x_3 \begin{bmatrix} 2\\-2\\1\\0 \end{bmatrix} + x_4 \begin{bmatrix} 7\\4\\0\\1 \end{bmatrix} = s \begin{bmatrix} 2\\-2\\1\\0 \end{bmatrix} + t \begin{bmatrix} 7\\4\\0\\1 \end{bmatrix} = s\mathbf{u} + t\mathbf{v}, \qquad s,t \in \mathbb{R}.$$

3. (*a*) Describe all solutions of the **homogeneous** system below on the left in parametric vector form. What type of geometric set does it form in \mathbb{R}^4 ?

$$x_1 + 3x_2 - 3x_3 + 7x_4 = 0$$

$$x_1 + 3x_2 - 3x_3 + 7x_4 = 1$$

$$x_2 - 4x_3 + 5x_4 = 0$$

$$x_2 - 4x_3 + 5x_4 = 2$$

$$-2x_1 - 8x_2 + 14x_3 - 24x_4 = 0$$

$$-2x_1 - 8x_2 + 14x_3 - 24x_4 = -6$$

(*b*) Describe all solutions of the **non-homogeneous** system above on the right.Describe the geometry of the solution set compared to the solution set of part (a).

Solution. Reduce the corresponding augmented matrix to RREF (not just EF).

$$\begin{bmatrix} 1 & 3 & -3 & 7 & 0 \\ 0 & 1 & -4 & 5 & 0 \\ -2 & -8 & 14 & -24 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 3 & -3 & 7 & 0 \\ 0 & 1 & -4 & 5 & 0 \\ 0 & -2 & 8 & -10 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 9 & -8 & 0 \\ 0 & 1 & -4 & 5 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \qquad \begin{aligned} x_1 & = -9x_3 + 8x_4 \\ x_2 & = & 4x_3 - 5x_4 \\ x_3 & = & \text{free} \\ x_4 & = & \text{free} \end{aligned}$$

So the general solution is

$$\mathbf{x} = x_3 \begin{bmatrix} -9\\4\\1\\0 \end{bmatrix} + x_4 \begin{bmatrix} 8\\-5\\0\\1 \end{bmatrix} = s \begin{bmatrix} -9\\4\\1\\0 \end{bmatrix} + t \begin{bmatrix} 8\\-5\\0\\1 \end{bmatrix} = s\mathbf{u} + t\mathbf{v}, \qquad s, t \in \mathbb{R}.$$

Span $\{\mathbf{u}, \mathbf{v}\}$ is a plane in \mathbb{R}^4 through the origin (the origin corresponds to the trivial solution).

(b) For the nonhomogeneous system, reduce to RREF.

$$\begin{bmatrix} 1 & 3 & -3 & 7 & 1 \\ 0 & 1 & -4 & 5 & 2 \\ -2 & -8 & 14 & -24 & -6 \end{bmatrix} \sim \begin{bmatrix} 1 & 3 & -3 & 7 & 1 \\ 0 & 1 & -4 & 5 & 2 \\ 0 & -2 & 8 & -10 & 4 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 9 & -8 & -5 \\ 0 & 1 & -4 & 5 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \qquad \begin{aligned} x_1 &= -5 - 9x_3 + 8x_4 \\ x_2 &= 2 + 4x_3 - 5x_4 \\ x_3 &= & \text{free} \\ x_4 &= & \text{free} \end{aligned}$$

So the general solution is

$$\mathbf{x} = \begin{bmatrix} -5\\2\\0\\0 \end{bmatrix} + x_3 \begin{bmatrix} -9\\4\\1\\0 \end{bmatrix} + x_4 \begin{bmatrix} 8\\-5\\0\\1 \end{bmatrix} = \begin{bmatrix} -5\\2\\0\\0 \end{bmatrix} + s \begin{bmatrix} -9\\4\\1\\0 \end{bmatrix} + t \begin{bmatrix} 8\\-5\\0\\1 \end{bmatrix} = \mathbf{p} + s\mathbf{u} + t\mathbf{v}, \qquad s, t \in \mathbb{R}.$$

The solution set is a plane in \mathbb{R}^4 that is translated parallel to the solution set of the homogenous system by the vector **p**.

4. Answer each of the following. These questions make you think about Theorems 1.2 and 1.4 and about what we called Fact 2 in Friday's class (below). Give clear, careful, short **proofs** that your answers are correct, using theorems and facts.

FACT 2.1. The homogeneous equation $A\mathbf{x} = \mathbf{0}$ has a nontrivial solution if and only if the equation has at least one free variable.

- (a) Suppose A is a 5×5 matrix with 4 pivot positions.
- 1. Must the equation $A\mathbf{x} = \mathbf{0}$ have a nontrivial solution?

Proof. Yes. Since there are only 4 pivots but 5 variables, there must be a free variable. By Fact 2 from Friday's class, the homogeneous system $A\mathbf{x} = \mathbf{0}$ has a non-trivial solution.

2. Must the equation $A\mathbf{x} = \mathbf{b}$ have a solution for EVERY $\mathbf{b} \in \mathbb{R}^5$?

Proof. No. We are given that *A* has 4 pivots but it has 5 rows. So one row does not contain a pivot. By Theorem 4 (page 37) the system $A\mathbf{x} = \mathbf{b}$ does not have a solution for every $\mathbf{b} \in \mathbb{R}^5$

- (b) Suppose A is a 5×4 matrix with 4 pivot positions.
- 1. Must the equation $A\mathbf{x} = \mathbf{0}$ have a nontrivial solution?

Proof. No. Since there are 4 pivots and 4 variables, there is no free variable. By Fact 2 from Friday's class (or Theorem 2), the homogeneous system $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.

2. Must the equation $A\mathbf{x} = \mathbf{b}$ have a solution for EVERY $\mathbf{b} \in \mathbb{R}^5$?

Proof. No. We are given that *A* has 4 pivots but it has 5 rows. So one row does not contain a pivot. By Theorem 4 the system $A\mathbf{x} = \mathbf{b}$ does not have a solution for every $\mathbf{b} \in \mathbb{R}^5$.

- (c) Suppose A is a 4×5 matrix with 4 pivot positions.
- 1. Must the equation $A\mathbf{x} = \mathbf{0}$ have a nontrivial solution?

Proof. Yes. Since there are only 4 pivots but 5 variables, there must be a free variable. By Fact 2 from Friday's class, the homogeneous system $A\mathbf{x} = \mathbf{0}$ has a non-trivial solution.

2. Must the equation $A\mathbf{x} = \mathbf{b}$ have a solution for EVERY $\mathbf{b} \in \mathbb{R}^4$?

Proof. Yes. We are given that *A* has 4 pivots and it has 4 rows. Since every row has a pivot, by Theorem 4 the system $A\mathbf{x} = \mathbf{b}$ has a solution for every $\mathbf{b} \in \mathbb{R}^4$. \Box

5. Let $A = [\mathbf{a}_1 \cdots \mathbf{a}_n]$ and $B = [\mathbf{b}_1 \cdots \mathbf{b}_n]$ both be $m \times n$ matrices. We define the **matrix sum** of *A* and *B* by adding the matrices column by column. That is,

$$A+B=\left[(\mathbf{a}_1+\mathbf{b}_1)\cdots(\mathbf{a}_n+\mathbf{b}_n)\right]$$

Prove that matrix addition is commutative, that is, A + B = B + A, by using appropriate an vector property of \mathbb{R}^{m} .

Proof. Let $A = [\mathbf{a}_1 \cdots \mathbf{a}_n]$ and $B = [\mathbf{b}_1 \cdots \mathbf{b}_n]$ both be $m \times n$ matrices. Then by definition of matrix addition,

Be careful: \mathbf{a}_i and \mathbf{b}_i are VECTORS, not real numbers!

$$A + B = \left[(\mathbf{a}_1 + \mathbf{b}_1) \cdots (\mathbf{a}_n + \mathbf{b}_n) \right]$$

= $\left[(\mathbf{b}_1 + \mathbf{a}_1) \cdots (\mathbf{b}_n + \mathbf{a}_n) \right]$ Property (i) p. 27: vector addition commutes $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$
= $B + A$