Assignment 13

Due Wednesday after break. Prove the following theorems.

- **1.** Prove: If *A* is $n \times n$, then det $A^T = \det A$. (This means we can do column operations on a matrix to simplify calculating the determinant.)
- **2.** Prove: If *A* is $n \times n$ and invertible, then det $A^{-1} = \frac{1}{\det A} = (\det A)^{-1}$.
- **3.** Prove: If *A* is square matrix *n* is a positive integer, then det $A^n = (\det A)^n$. If you know how to do induction, try it that way.
- **4.** Let *A* is *n* × *n* and let *k* be any scalar. Find a formula for det(*kA*) in terms of det *A*.
- **5.** A $n \times n$ invertible matrix U is **orthogonal** if $U^{-1} = U^T$. Prove that if U is orthogonal, then det $U = \pm 1$.
- **6.** An $n \times n$ matrix A is said to be **conjugate** to the $n \times n$ matrix B if there is some invertible $n \times n$ matrix M so that $A = MBM^{-1}$. Prove: If A is conjugate to B, then det $A = \det B$.
- 7. Page 176, #40.
- 8. Sebastien's Theorem. Consider these three off-diagonal matrices.

							Γ∩	0	0	0	<i>a</i>]		0	0	0	0	0	a	
A =	0	0	0	a	P			0	0	0 1			0	0	0	0	b	0	
	0	0	b	0			0	0	0		<i>C</i> –	0	0	0	С	0	0		
	0	С	0	0		D =		0 1	C O	0		U =	0	0	d	0	0	0	
	d	0	0	0				и 0	0	0			0	f	0	0	0	0	
							L)	0	0	0	0]		8	0	0	0	0	0	

In each case, is the determinant of each the product of the diagonal elements? Show your work, justify your answer. Hint: Use row operations.

Rear Bonus: Can you figure out for which size matrices Sebastien's Theorem holds?

9. Section 3.3 (Page 184–5) Exercises #20, 22, and 28.

10. Suppose that
$$A = \begin{bmatrix} a & b & c & d \\ e & f & g & h \\ i & j & k & l \\ m & n & o & p \end{bmatrix}$$
. If det $A = -3$, evaluate det $\begin{bmatrix} a & b & c - 2a & d \\ e & f & g - 2e & h \\ i & j & k - 2i & l \\ m & n & o - 2m & p \end{bmatrix}$.

11. Bonus: Find a formula (using determinants) for the area of a triangle whose vertices are **0**, **u**, and **v**. Explain why your formula is correct.