Office Hour Help: M \& W 2:30-4:00, Tu 2:00-3:30, \& F 1:30-2:30 or by appointment. Website: http://math.hws.edu/~mitchell/Math204S16/index.php.

Reading, Practice, and Review

1. Read Section 1.2 and review Section 1.1.
2. (a) You should be able to define these key concepts: linear system, solution, solution set, equivalent systems, $m \times n$ matrix, coefficient matrix, augmented matrix, row operations, and row equivalent matrices.
(b) For next time the key concepts in Section 1.2: pivot, pivot column, echelon form, reduced row echelon form, basic variables, free variables.
3. (a) Key Fact about Row Equivalence: If the augmented matrices of two linear systems are row equivalent, then the two systems have the same solution set.
(b) How can you tell from the reduced row echelon form of a system whether it has no, exactly one, or infinitely many solutions?
(c) General Linear System. In a system of m equations in n unknowns, what does $a_{i j}$ denote? What about b_{k} ?

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}+\cdots+a_{1 n} x_{n}=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}+\cdots+a_{2 n} x_{n}=b_{2} \\
& a_{31} x_{1}+a_{32} x_{2}+a_{33} x_{3}+\cdots+a_{3 n} x_{n}=b_{2} \\
& \vdots \vdots \\
& \vdots \\
& a_{m 1} x_{1}+a_{m 2} x_{2}+a_{m 3} x_{3}+\cdots+a_{m n} x_{m}=b_{m}
\end{aligned}
$$

4. Practice (not collected). Relatively easy: Page 10-11 \#1, 5, 9, 13, 15, 19, 21, and 23. A bit harder 25 and 27.

Classwork/Practice

(a) Determine which of these augmented matrices are in echelon form (but not reduced row echelon form), which are in RREF, and which are neither.
(b) For those in EF or RREF, what are the pivot columns?
(c) Since these are augmented matrices, which systems in EF or RREF are not consistent?

$$
\begin{aligned}
& {\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 6 & 3 \\
0 & 1 & -6 & 1 \\
0 & 0 & 0 & 0
\end{array}\right] \quad\left[\begin{array}{ccccccccc}
0 & 0 & 1 & 2 & 0 & 0 & -3 & 0 & 7 \\
1 & 0 & 0 & 0 & 1 & 0 & 6 & 0 & 8 \\
0 & 0 & 0 & 0 & 0 & 1 & 9 & 0 & 11 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 4
\end{array}\right] \quad\left[\begin{array}{ccccccccc}
1 & 1 & 1 & 8 & 0 & 0 & 6 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 4 & 0 & 4 \\
0 & 0 & 0 & 0 & 0 & 1 & 2 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 5
\end{array}\right]} \\
& {\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 1 & 1
\end{array}\right]\left[\begin{array}{llll}
4 & 0 & 2 & 6 \\
0 & 1 & 9 & 8 \\
0 & 0 & 0 & 7
\end{array}\right]\left[\begin{array}{cccccccc}
1 & 0 & 6 & 0 & 0 & 4 & 0 & 11 \\
0 & 8 & 0 & 1 & 0 & 7 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 12 & 0 & -1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 6
\end{array}\right] \quad\left[\begin{array}{llllllll}
1 & 0 & 0 & 0 & 0 & 4 & 0 & 11 \\
0 & 1 & 0 & 0 & 0 & 7 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 12 & 0 & -1 \\
0 & 0 & 0 & 1 & 0 & 0 & 1 & 6
\end{array}\right]}
\end{aligned}
$$

Hand In

Hand the following problems on Monday at the beginning of class.

1. Consider the system of linear equations below:

$$
\begin{aligned}
2 x+y & =1 \\
6 x+3 y & =b
\end{aligned}
$$

For what value(s) of b is the system inconsistent? For what values of b does the system have infinitely many solutions? For what value(s) of b does the system have a unique solution? Show your work/justify your answers.
2. Section 1.1, pages 10-11. Do these by hand; do not use Maple (though you may always check your answers with Maple).
(a) \#10. Continue to reduced row echelon form and determine the solution. Use matrix notation and label each step. Note that each step should consist of a SINGLE elementary row operation.
(b) \#12. Use matrix notation and label each step. Note that each step should consist of a SINGLE elementary row operation.
(c) \#16. Use matrix notation and label your steps (you may carefully do more than one at once). You can answer the question from the echelon form. (RREF not required.)
(d) \#18. How does this question translate into a question about systems of equations? Use matrix notation to solve the relevant system, and show your work/reasoning.
(e) \#20. Show your work/explain your reasoning.
(f) \#22. Show your work/explain your reasoning.
3. An application to the physics of heat transfer:
(a) Page 11 \#33. Show your work as was done for T_{1} in the problem statement. Check your answer in the back.
(b) Page 11 \#34. Your choice: Solve the system in part (a). Either use Maple (print out and interpret the result) or use matrix notation to solve the system. (In the latter case, switch rows 1 and 4 to start).

