Office Hour Help: M \& W 2:30-4:00, Tu 2:00-3:30, \& F 1:30-2:30 or by appointment. Website: http://math.hws.edu/~mitchell/Math204S16/index.php.

Reading, Practice, and Review

1. Read ahead in Section 1.4 and review Section 1.3 .
(a) You should be able to define these key concepts: column vector, scalar multiple, zero vector, linear combination and \mathbb{R}^{n}.
(b) How can you tell from the (reduced) row-echelon form of a system whether it has no, exactly one, or infinitely many solutions?
2. (a) Practice (not collected). Do Practice Problem \#1 on page 31 . The answer is on page 34 but it should use column vectors.
(b) Page $32 \# 1,3,5,7,9$, and 11 .

Hand in: Due Monday

Remember due Friday: WeBWorK set HW1 on linear systems.

1. Section 1.2, Exercises 17 and 18. Be sure to show your work and justify your answers.
2. Section 1.2, Exercise 20. Be sure to show your work/reasoning. Review the answers to the a similar, easier question on the Day 2 Assignment.

Hint: Which Theorem is helpful?

Hint: Which Theorem is helpful.
(a) A system of 5 equations in 3 unknowns that has exactly 1 solution.
(b) A system of 5 equations in 3 unknowns that has infinitely many solutions.
(c) A system of 5 equations in 3 unknowns that has exactly 2 solutions.
5. Repeat Problem 3 for the following statements.
(a) A system of 3 equations in 5 unknowns that has infinitely many solutions.
(b) A system of 3 equations in 5 unknowns that has no solutions.
(c) A system of 3 equations in 5 unknowns that has exactly 1 solution.
6. Section 1.3, Exercise 10. Easy, but important in the next section!
7. Section 1.3, Exercise 12.
8. I will add one or two problems on Friday to this assignment.

Classwork
EXAMPLE: Let $\mathbf{v}_{1}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$ and $\mathbf{v}_{2}=\left[\begin{array}{r}-2 \\ 2\end{array}\right]$. Express each of the following as a linear combination of \mathbf{v}_{1} and \mathbf{v}_{2} :

$$
\mathbf{a}=\left[\begin{array}{l}
0 \\
3
\end{array}\right], \mathbf{b}=\left[\begin{array}{r}
-4 \\
1
\end{array}\right], \mathbf{c}=\left[\begin{array}{l}
6 \\
6
\end{array}\right], \mathbf{d}=\left[\begin{array}{r}
7 \\
-4
\end{array}\right]
$$

