Solutions to Homogeneous and Non-homogeneous Systems

FACT 1.1. Homogeneous Systems

(1) A homogenous system $A \mathbf{x}=\mathbf{0}$ is always consistent.
(2) A homogenous system $A \mathbf{x}=\mathbf{0}$ has a non-trivial solution if and only if the system has at least one free variable.

EXAMPLE 1.5.1. The homogenous system

$$
\begin{aligned}
2 x_{1}+4 x_{2}+x_{3}-2 x_{4} & =0 \\
x_{1}+2 x_{2}+x_{3}+x_{4} & =0 \\
x_{1}+2 x_{2}-3 x_{4} & =0
\end{aligned}
$$

must have a non-trivial solution. (Why?)

$$
\left[\begin{array}{ll}
A & \mathbf{0}
\end{array}\right] \sim\left[\begin{array}{ccccc}
1 & 2 & 0 & -3 & 0 \\
0 & 0 & 1 & 4 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \quad \begin{array}{rlrl}
x_{1} & =-2 x_{2}+3 x_{4} \\
x_{2} & = & \text { free } \\
x_{3} & = & -4 x_{4} \\
x_{4} & = & \text { free }
\end{array}
$$

The solutions in vector and parametric form:

$$
\mathbf{x}\left[\begin{array}{c}
-2 x_{2}+3 x_{4} \\
x_{2} \\
-4 x_{4} \\
x_{4}
\end{array}\right]=x_{2}\left[\begin{array}{c}
-2 \\
1 \\
0 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{c}
3 \\
0 \\
-4 \\
1
\end{array}\right]=s\left[\begin{array}{c}
-2 \\
1 \\
0 \\
0
\end{array}\right]+t\left[\begin{array}{c}
3 \\
0 \\
-4 \\
1
\end{array}\right]=s \mathbf{u}+t \mathbf{v} \quad(s, t \in \mathbb{R}) .
$$

Another description:

$$
\operatorname{Span}\{\mathbf{u}, \mathbf{v}\}=\operatorname{Span}\left\{\left[\begin{array}{c}
-2 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
3 \\
0 \\
-4 \\
1
\end{array}\right]\right\}
$$

Nonhomogeneous Systems

$A \mathbf{x}=\mathbf{b}$, where $\mathbf{b} \neq \mathbf{0}$. By Theorem 2 , such systems may or may not be consistent, depending on whether the final column contains a pivot.

EXAMPLE 1.5.2. Consider the nonhomogenous system

$$
\begin{aligned}
2 x_{1}+4 x_{2}+x_{3}-2 x_{4} & =5 \\
x_{1}+2 x_{2}+x_{3}+x_{4} & =3 \\
x_{1}+2 x_{2}-3 x_{4} & =2
\end{aligned}
$$

that has the same coefficient matrix as above. Reduce to solve:

$$
\left[\begin{array}{ll}
A & \mathbf{b}
\end{array}\right] \sim\left[\begin{array}{lllcl}
1 & 2 & 0 & -3 & 2 \\
0 & 0 & 1 & 4 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \quad \begin{array}{rlrl}
x_{1} & & =2-2 x_{2}+3 x_{4} \\
x_{2} & = & \text { free } \\
x_{3} & = & 1-4 x_{4} \\
& & & x_{4}
\end{array}
$$

The solutions in vector and parametric form:
$\mathbf{x}\left[\begin{array}{c}2-2 x_{2}+3 x_{4} \\ x_{2} \\ 1-4 x_{4} \\ x_{4}\end{array}\right]=[]+x_{2}[]+x_{4}[]=[]+s[]+t[]=\mathbf{p}+s \mathbf{u}+t \mathbf{v} \quad(s, t \in \mathbb{R})$.

Here \mathbf{p} is a particular solution (check) to the system while $s \mathbf{u}+t \mathbf{v}$ gives the solutions to the companion homogeneous system. The effect is to translate or shift the entire solution set of the homogeneous system by a vector \mathbf{p} to the solution set of the nonhomogeneous system. To be able to do this, the $A \mathbf{x}=\mathbf{b}$ must have at least one particular solution \mathbf{p}-that is, the system must be consistent. The following theorem shows that this is always the case.
THEOREM (Theorem 6). Suppose the equation $A \mathbf{x}=\mathbf{b}$ is consistent and let \mathbf{p} be a particular solution. Then the solution set of $A \mathbf{x}=\mathbf{b}$ is the set of all vectors of the form

$$
\mathbf{w}=\mathbf{p}+\mathbf{v}_{h},
$$

where \mathbf{v}_{h} is a solution of the homogeneous equation $A \mathbf{x}=\mathbf{0}$.
Proof. Let \mathbf{p} be a particular solution to the nonhomogeneous system $A \mathbf{x}=\mathbf{b}$ and let \mathbf{w} be some other solution to $A \mathbf{x}=\mathbf{b}$. Let $\mathbf{v}_{h}=\mathbf{w}-\mathbf{p}$. Then

$$
A \mathbf{v}_{h}=A(\mathbf{w}-\mathbf{p})=
$$

\qquad ,

So \mathbf{v}_{h} is a solution to the \qquad .

Morevover,

$$
\mathbf{p}+\mathbf{v}_{h}=
$$

\qquad
so $\mathbf{w}=\mathbf{p}+\mathbf{v}_{h}$ has the correct form.

Summary. Writing the solutions to consistent system $A \mathbf{x}=\mathbf{b}$ in parametric form:

1. Row reduce $\left[\begin{array}{ll}A & \mathbf{b}\end{array}\right]$ to reduced echelon form.
2. Express each basic variable in terms of the free variables.
3. Write the general solution \mathbf{x} as a vector whose entries depend on the free variables, if any.
4. Decompose \mathbf{x} into a linear combination of vectors using the free variables as parameters.
EXERCISE 1.5.3. Suppose $\mathbf{y}=\left[\begin{array}{c}2 \\ -3 \\ 1\end{array}\right]$ is a solution to a 3×3 homogeneous system $A \mathbf{x}=\mathbf{0}$.
Find a possible matrix A for this system. Hint: Think of $A=\left[\begin{array}{lll}\mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{a}_{3}\end{array}\right]$. Write the product $A \mathbf{y}=\mathbf{0}$ as a combination of the columns of A. What columns satisfy this relation?

Homework, Reading, Practice.

1. Due Wednesday, 10 February: Assignment 6, Part 1 online. Additional problems will be assigned for Friday.
2. WeBWorK HW_{3} will open on Tuesday. Due Monday, February 15th. These are problems on linear independence.
3. (a) Today: Dr. Caitlyn Parmelee from University of Nebraska-Lincoln. 4:30pm in Napier 201 (Snacks at $4: 15 \mathrm{pm}$). Title: Modeling in Mathematical Neuroscience
(b) Thursday, Feb 11th: Dr. Alexander Diaz Lopez. 4:30pm in Napier 201 (Snacks at $4: 15 \mathrm{pm})$. Remember: Attendance at two talks is required.
4. Review Section 1.5. See previously assigned practice online.
5. (a) Read Section 1.7. Memorize the definition of linear independence. We will use this notion repeatedly.
(b) Reading Check (not to be handed in, check answers in back of text): Section 1.7: Practice: Page 60 \#1-4 (answers on page 62). Basics: Page 60-61: \#1, 3 (by inspection, avoid reduction), 5, 7 (by inspection), 9 (nice), and 11. .

Goal: Find a vector \mathbf{v}_{h} so that $\mathbf{w}=$ $\mathbf{p}+\mathbf{v}_{h}$. Notice that this equation tells us the 'answer.' Solving we must have $\mathbf{v}_{h}=\mathbf{w}-\mathbf{p}$. But is this \mathbf{v}_{h} a solution to the homogeneous system $A \mathbf{x}=\mathbf{0}$?

