Review Section 1.8; read Section 1.9. Key Ideas: Transformation, Linear Transformation, Properties of Linear Transformations (see page 66, (3), (4), (5)), Linear Transformations are Matrix Transformations (Theorem 10). New definitions: standard matrix of a linear transformation, one-to-one transformation, onto transformation.

Posted online: Short Assignment 7 due Wednesday. WeBWork HW4 on lin trans due Sat night.

Practice: (not handed in—check answers in back of text): Section 1.8, page 68: \#1 3,5,7,9,15, 17. Try the T/F in \#21. Practice: Section 1.9, page 78: \#15-21 odd.

DEFINITION. A transformation (mapping) T is linear if
(1) $T(\mathbf{u}+\mathbf{v})=T(\mathbf{u})+T(\mathbf{v})$ for all \mathbf{u}, \mathbf{v} in the domain of T;
(2) $T(c \mathbf{u})=c T(\mathbf{u})$ for all scalars c and all \mathbf{u} in the domain of T.

Note: We say that a linear transformation preserves the operations of addition and scalar multiplication.

Note: When A is an $n \times m$ matrix, the transformation $T: \mathbb{R}^{n} \rightarrow R^{m}$ by $T(\mathbf{x})=A \mathbf{x}$ is
linear using basic matrix algebra: $A(\mathbf{u}+\mathbf{v})=A(\mathbf{u})+A(\mathbf{v})$ and $A(c \mathbf{u})=c A(\mathbf{u})$
Note: We will see that every linear transformation $T: \mathbb{R}^{n} \rightarrow R^{m}$ is actually a matrix transformation.

EXERCISE 1.8.1. Determine whether
(1) $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by $T\left(\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]\right)=\left[\begin{array}{l}x_{1}^{2} \\ x_{3}\end{array}\right]$. Always start by setting up notation.

Solution: Check the two properties. Let $\mathbf{u}=\left[\begin{array}{l}u_{1} \\ u_{2}\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]$.
(2) $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ by $T\left(\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]\right)=\left[\begin{array}{c}x_{2} \\ x_{1} \\ x_{1}+2 x_{2}\end{array}\right]$.

Solution: Check the two properties. Let $\mathbf{u}=\left[\begin{array}{l}u_{1} \\ u_{2}\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]$.

EXERCISE 1.8.2. Determine the matrices A for each of the following linear transformations.
(3) The linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ above.
(4) $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ by $T\left(\mathbf{e}_{1}\right)=\left[\begin{array}{l}1 \\ 4\end{array}\right], T\left(\mathbf{e}_{2}\right)=\left[\begin{array}{l}0 \\ 3\end{array}\right]$, and $T\left(\mathbf{e}_{3}\right)=\left[\begin{array}{c}1 \\ -1\end{array}\right]$.
(5) Determine $T\left(\left[\begin{array}{l}1 \\ 0 \\ 2\end{array}\right]\right)$ for the transformation in part (4).

