Day 15: Reading and Practice

Office Hour Help: M \& W 2:30-4:00, Tu 2:00-3:30, \& F 1:30-2:30 or by appointment. Website: http://math.hws.edu/~mitchell/Math204S16/index.php.

1. Read Section 2.2 and Review Section 2.1 which we should finish next time. This is basic matrix algebra and I think we can cover much of it quickly.
(a) Key terms and concepts: $n \times n$ identity matrix, $m \times n$ zero matrix, diagonal entries, $n \times n$ diagonal matrix, matrix multiplication (columns of $A B$ are linear combinations of the columns of A), matrix multiplication is not commutative, A^{T} the transpose of A. Next up: multiplicative inverses of square matrices sometimes exist.
2. Practice. Not to be handed in, check the answers in the back.
(a) Page 100: \#5, 7, 8, 9, 10, 31.
(b) Try \#17. See the discussion after Example 3. First you are trying to solve $A \mathbf{x}=$ $\left[\begin{array}{r}-1 \\ 6\end{array}\right]$.
(c) Try \#23. Given $A \mathbf{x}=\mathbf{0}$. Multiply both sides of this equation on the LEFT by C. Now use the other piece of information in the problem.
(d) Suppose that A is $m \times n$ and that $C A=I_{n}$. What size is C ? Now suppose that $A D=I_{m}$. What size is D ? Compute $C A D$ two ways: as ($\left.C A\right) D$ and $C(A D)$. So what can you say about about the matrices C and D ? What can you say about their sizes? Now what can you say about the size of A ? Now do problem \#25.

Hand In Wednesday

Begin WeBWork LHW6 online, due Thursday. Work on the problem set due Friday (see back of page). Come to the talk on Wednesday.

1. Assume B is a 3×3 matrix and that $A=\left[\begin{array}{ccc}1 & 2 & 4 \\ 2 & 5 & 12 \\ -1 & -2 & -3\end{array}\right]$. Suppose that $A B=I_{3}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{lll}\mathbf{e}_{1} & \mathbf{e}_{2} & \mathbf{e}_{3}\end{array}\right]$. Determine the three columns of B as follows.
(a) Solve the system of equations $A \mathbf{x}=\mathbf{e}_{1}$, where, as usual, $\mathbf{e}_{1}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$.
(b) Now solve the systems $A \mathbf{y}=\mathbf{e}_{2}$ and $A \mathbf{z}=\mathbf{e}_{3}$.
(c) Using the vectors you found above, form the matrix $B=\left[\begin{array}{lll}\mathbf{y} \mathbf{z}\end{array}\right]$. Then calculate $A B$ and $B A$.
(d) What's interesting about your answers above? How would you describe the relationship between A and B ?
(e) Use a theorem in Section 2.1 to quickly evaluate $A^{T} B^{T}$ and $B^{T} A^{T}$ without and further numerical calculations.
