Reading and Practice

Office Hour Help: M \& W 2:30-4:00, Tu 2:00-3:30, \& F 1:30-2:30 or by appointment. Website: http://math.hws.edu/~mitchell/Math204S16/index.php.

1. Re-read Section 2.2 and Review Section 2.1.
(a) Key terms and concepts: $n \times n$ identity matrix, $m \times n$ zero matrix, diagonal entries, $n \times n$ diagonal matrix, matrix multiplication (columns of $A B$ are linear combinations of the columns of A), matrix multiplication is not commutative, A^{T} the transpose of A. Next up: multiplicative inverses of square matrices sometimes exist.
2. Read ahead and try: Section 2.2, page 109, Exercises 1,3 and 5 .
3. Section 2.1. Practice. These were all mentioned last time. Not to be handed in, check the answers in the back.
(a) Page 100: $\#_{5}, 7,8,9,10,31$.
(b) Try \#17. See the discussion after Example 3. First solve $A \mathbf{x}=\left[\begin{array}{r}-1 \\ 6\end{array}\right]$.
(c) Try \#23. Given $A \mathbf{x}=\mathbf{0}$. Multiply both sides of this equation on the LEFT by C. Now use the other piece of information in the problem.
(d) Suppose that A is $m \times n$ and that $C A=I_{n}$. What size is C ? Now suppose that $A D=I_{m}$. What size is D ? Compute CAD two ways: as $(C A) D$ and $C(A D)$. So what can you say about about the matrices C and D ? What can you say about their sizes? Now what can you say about the size of A ? Now do problem \#25.

Collected Work

1. (a) Finish WeBWork LHW6 by Thursday night.
(b) Finish Assignment 9 for Friday.

Class Work

1. Calculate these matrix products:

$$
\begin{gathered}
A B=\left[\begin{array}{ll}
1 & 1 \\
2 & 2
\end{array}\right]\left[\begin{array}{cc}
2 & 6 \\
-2 & -6
\end{array}\right]= \\
A C=\left[\begin{array}{ll}
1 & 1 \\
2 & 2
\end{array}\right]\left[\begin{array}{cc}
1 & -4 \\
-1 & 4
\end{array}\right]=
\end{gathered}
$$

2. Assume A is $m \times n$ and B is $n \times p$. Suppose that column 2 of B is 8 times column 1 of B. Prove that column 2 of $A B$ is 8 times column 1 of $A B$.
3. Assume A is $m \times n$ and B is $n \times p$. Suppose that the first column $A B$ is all zeroes, but that B has no zero entries. Prove that A has a free variable.
4. Assume A is $m \times n$ and C is $n \times m$. If $C A=I_{n}$, prove that $A \mathbf{x}=\mathbf{0}$ has only the trivial solution.
5. If A and B are as in Problem 1 , evaluate $A^{T} B^{T}$ and $B^{T} A^{T}$ without and further numerical calculations.
