THEOREM o.0.1 (The Connections Theorem). Let A be an $n \times n$ matrix and let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ with standard matrix A. Then the following are equivalent.
(a) A is non-singular
(b) $A \sim I_{n}$
(c) A has n pivots positions
(d) A has pivot in every row
(e) For any $\mathbf{b} \in \mathbb{R}^{n}$, the system $A \mathbf{x}=\mathbf{b}$ is consistent
(f) Any $\mathbf{b} \in \mathbb{R}^{n}$ is a linear combination of the columns of A
(g) The columns of A span \mathbb{R}^{n}
(h) $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is onto
(i) A has pivot in every column (no free variables)
(j) $A \mathbf{x}=\mathbf{0}$ has only the trivial solution $\mathbf{x}=\mathbf{0}$
(k) The columns of A are independent
(l) $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is one-to-one
(m) There is an $n \times n$ matrix C such that $C A=I_{n}$
(n) There is an $n \times n$ matrix D such that $A D=I_{n}$
(o) A^{T} is invertible
(p) For any $\mathbf{b} \in \mathbb{R}^{n}$, the system $A \mathbf{x}=\mathbf{b}$ has a unique solution

Proof. $(a) \Longleftrightarrow(n) .(a) \Rightarrow(n)$: Since A is invertible, let $D=A^{-1}$.
$(n) \Rightarrow(a)$: Given $n \times n$ matrices A and D such that $A D=I_{n}$. (Show A is invertible.) Since $A D=I$, this implies part (m) for the matrix D (i.e., substitute D for A and A for C in (m)). So D is invertible, so D^{-1} exists. Then

$$
(A D) D^{-1}=I D^{-1} \text { or } A=D^{-1}
$$

By Theorem 2.6, D^{-1} is invertible, so A is invertible (and $A^{-1}=D$).
Proof. $(a) \Longleftrightarrow(p) .(a) \Rightarrow(p)$: This is the First Connection Theorem (Theorem 2.5).
$(p) \Rightarrow(a)$: Given that for any $\mathbf{b} \in \mathbb{R}^{n}, A \mathbf{x}=\mathbf{b}$ has a unique solution. Then for any $\mathbf{b} \in \mathbb{R}^{n}, A \mathbf{x}=\mathbf{b}$ has a solution, which is part (e). So $(p) \Rightarrow(e) \Rightarrow(a)$.

THEOREM 0.0.2 (The Onto Dictionary). Let A be an $m \times n$ matrix and let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ with standard matrix A. Then the following are equivalent.
(a) A has m pivots positions
(b) A has pivot in every row
(c) For any $\mathbf{b} \in \mathbb{R}^{m}$, the system $A \mathbf{x}=\mathbf{b}$ is consistent
(d) Any $\mathbf{b} \in \mathbb{R}^{m}$ is a linear combination of the columns of A
(e) The columns of A span \mathbb{R}^{m}
(f) $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is onto

THEOREM 0.0.3 (The One-to-One Dictionary). Let A be an $m \times n$ matrix and let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ with standard matrix A. Then the following are equivalent.
(a) A has n pivots positions
(b) A has pivot in every column (no free variables)
(c) $A \mathbf{x}=\mathbf{0}$ has only the trivial solution $\mathbf{x}=\mathbf{0}$
(d) The columns of A are independent
(e) $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is one-to-one

Reading and Practice

Office Hour Help: M \& W 2:30-4:00, Tu 2:00-3:30, \& F 1:30-2:30 or by appointment. Website: http://math.hws.edu/~mitchell/Math204S16/index.php.

1. Finish Assignment 11. A few NEW problems have been added.
2. Read/Reread Section 3.1 on Determinants. Review the Connections Theorem (Invertible Matrix Theorem) in Section 2.3. Our version is longer.
(a) Do the Practice Problems at the bottom of page 114. Then try: Page 115-116 \#1, 3 (use A^{T} !), 5, 11, 13, 15, 17 (Hint: Use Theorem 8 and Theorem 6), 21 (like a question on a test), 23,27 (use the definition of invertible), 31 (use a 'dictionary').
(b) Determinant Computations: Pages $167 \mathrm{ff} \# 1,3,5,11,19,23,25,29,33$.

Review Question

This question reviews several ideas. I will probably assign it Monday. JUST DO IT.
Suppose that $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a linear transformation. Let $\mathbf{u}=\left[\begin{array}{l}2 \\ 4\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{l}4 \\ 6\end{array}\right]$.
Assume that $T(\mathbf{u})=T\left[\begin{array}{l}2 \\ 4\end{array}\right]=\left[\begin{array}{c}6 \\ -2\end{array}\right]$ and $T(\mathbf{v})=T\left[\begin{array}{l}4 \\ 6\end{array}\right]=\left[\begin{array}{l}1 \\ 1\end{array}\right]$.
(c) Determine $T(3 \mathbf{u}-2 \mathbf{v})$.
(d) Determine $T\left(\mathbf{e}_{1}\right)$. Hint: Express \mathbf{e}_{1} as a linear combination of \mathbf{u} and \mathbf{v}. Then proceed as in part (a).
(e) Similarly determine $T\left(\mathbf{e}_{2}\right)$.
(f) Determine the standard matrix A for T.
(g) Is A invertible?
(h) Determine all the vectors \mathbf{w} such that $T(\mathbf{w})=\mathbf{b}=\left[\begin{array}{l}2 \\ 0\end{array}\right]$.
(i) Determine $T(\mathbf{x})=T\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$.
(j) Is T onto? Explain carefully citing appropriate theorems.
(k) Is T one-to-one? Explain carefully citing appropriate theorems.

