\square

THEOREM 0.0.1 (The Connections Theorem). Let *A* be an $n \times n$ matrix and let $T : \mathbb{R}^n \to \mathbb{R}^n$ with standard matrix *A*. Then the following are equivalent.

- (a) A is non-singular
- (b) $A \sim I_n$
- (c) A has n pivots positions
- (d) A has pivot in every row
- (*e*) For any $\mathbf{b} \in \mathbb{R}^n$, the system $A\mathbf{x} = \mathbf{b}$ is consistent
- (*f*) Any $\mathbf{b} \in \mathbb{R}^n$ is a linear combination of the columns of *A*
- (g) The columns of A span \mathbb{R}^n
- (*h*) $T: \mathbb{R}^n \to \mathbb{R}^n$ is onto
- (*i*) *A* has pivot in every column (no free variables)
- (*j*) $A\mathbf{x} = \mathbf{0}$ has only the trivial solution $\mathbf{x} = \mathbf{0}$
- (k) The columns of A are independent
- (*l*) $T : \mathbb{R}^n \to \mathbb{R}^n$ is one-to-one
- (*m*) There is an $n \times n$ matrix *C* such that $CA = I_n$
- (*n*) There is an $n \times n$ matrix D such that $AD = I_n$
- (o) A^T is invertible
- (*p*) For any $\mathbf{b} \in \mathbb{R}^n$, the system $A\mathbf{x} = \mathbf{b}$ has a *unique* solution

Proof. (*a*) \iff (*n*). (*a*) \Rightarrow (*n*): Since *A* is invertible, let $D = A^{-1}$.

 $(n) \Rightarrow (a)$: Given $n \times n$ matrices A and D such that $AD = I_n$. (Show A is invertible.) Since AD = I, this implies part (m) for the matrix D (i.e., substitute D for A and A for C in (m)). So D is invertible, so D^{-1} exists. Then

$$(AD)D^{-1} = ID^{-1}$$
 or $A = D^{-1}$.

By Theorem 2.6, D^{-1} is invertible, so *A* is invertible (and $A^{-1} = D$).

Proof. (*a*) \iff (*p*). (*a*) \Rightarrow (*p*): This is the First Connection Theorem (Theorem 2.5).

 $(p) \Rightarrow (a)$: Given that for any $\mathbf{b} \in \mathbb{R}^n$, $A\mathbf{x} = \mathbf{b}$ has a *unique* solution. Then for any $\mathbf{b} \in \mathbb{R}^n$, $A\mathbf{x} = \mathbf{b}$ has a solution, which is part (e). So $(p) \Rightarrow (e) \Rightarrow (a)$.

THEOREM 0.0.2 (The Onto Dictionary). Let *A* be an $m \times n$ matrix and let $T : \mathbb{R}^n \to \mathbb{R}^m$ with standard matrix *A*. Then the following are equivalent.

- (a) A has m pivots positions
- (b) A has pivot in every row
- (*c*) For any $\mathbf{b} \in \mathbb{R}^m$, the system $A\mathbf{x} = \mathbf{b}$ is consistent
- (*d*) Any $\mathbf{b} \in \mathbb{R}^m$ is a linear combination of the columns of *A*
- (e) The columns of A span \mathbb{R}^m
- (f) $T: \mathbb{R}^n \to \mathbb{R}^m$ is onto

THEOREM 0.0.3 (The One-to-One Dictionary). Let *A* be an $m \times n$ matrix and let $T : \mathbb{R}^n \to \mathbb{R}^m$ with standard matrix *A*. Then the following are equivalent.

- (*a*) *A* has *n* pivots positions
- (b) A has pivot in every column (no free variables)
- (c) $A\mathbf{x} = \mathbf{0}$ has only the trivial solution $\mathbf{x} = \mathbf{0}$
- (d) The columns of A are independent
- (e) $T: \mathbb{R}^n \to \mathbb{R}^m$ is one-to-one

Reading and Practice

Office Hour Help: M & W 2:30–4:00, Tu 2:00–3:30, & F 1:30–2:30 or by appointment. Website: http://math.hws.edu/~mitchell/Math204S16/index.php.

- 1. Finish Assignment 11. A few NEW problems have been added.
- **2.** Read/Reread Section 3.1 on Determinants. Review the Connections Theorem (Invertible Matrix Theorem) in Section 2.3. Our version is longer.
 - (*a*) Do the Practice Problems at the bottom of page 114. Then try: Page 115–116 #1, 3 (use A^T!), 5, 11, 13, 15, 17 (Hint: Use Theorem 8 and Theorem 6), 21 (like a question on a test), 23, 27(use the definition of invertible), 31 (use a 'dictionary').
 - (b) Determinant Computations: Pages 167ff #1, 3, 5, 11, 19, 23, 25, 29, 33.

Review Question

This question reviews several ideas. I will probably assign it Monday. JUST DO IT.

Suppose that $T : \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation. Let $\mathbf{u} = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} 4 \\ 6 \end{bmatrix}$. Assume that $T(\mathbf{u}) = T \begin{bmatrix} 2 \\ 4 \end{bmatrix} = \begin{bmatrix} 6 \\ -2 \end{bmatrix}$ and $T(\mathbf{v}) = T \begin{bmatrix} 4 \\ 6 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$.

- (c) Determine $T(3\mathbf{u} 2\mathbf{v})$.
- (*d*) Determine *T*(**e**₁). Hint: Express **e**₁ as a linear combination of **u** and **v**. Then proceed as in part (a).

г п

- (*e*) Similarly determine $T(\mathbf{e}_2)$.
- (*f*) Determine the standard matrix *A* for *T*.
- (g) Is A invertible?

(*h*) Determine all the vectors **w** such that
$$T(\mathbf{w}) = \mathbf{b} = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$$
.

- (*i*) Determine $T(\mathbf{x}) = T\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$.
- (*j*) Is *T* onto? Explain carefully citing appropriate theorems.
- (*k*) Is *T* one-to-one? Explain carefully citing appropriate theorems.