Office Hour Help: M \& W 2:30-4:00, Tu 2:00-3:30, \& F 1:30-2:30 or by appointment. Website: http://math.hws.edu/~mitchell/Math204S16/index.php.

Reading, Practice, and Work

Finish WeBWorK Determinants1 (due Monday) and WeBWork Determinants2 Due Thursday. See back for Homework.

1. Key concepts from last time:

DEFINITION o.o.1. The determinant of a 1×1 matrix $A=[a]$ is $\operatorname{det} A=a$. For $n \geq 2$, the determinant of the $n \times n$ matrix $A=\left[a_{i j}\right]$ is the alternating sum

$$
\operatorname{det} A=|A|=\sum_{j=1}^{n}(-1)^{1+j} a_{1 j} \operatorname{det} A_{1 j}=a_{11} \operatorname{det} A_{11}-a_{12} \operatorname{det} A_{12}+\cdots(-1)^{1+n} a_{1 n} \operatorname{det} A_{1 n}
$$

$C_{i j}=(-1)^{i+j} a_{i j} A_{i j}$ is the (\mathbf{i}, \mathbf{j})-cofactor of A, then

$$
\operatorname{det} A=|A|=\sum_{j=1}^{n} a_{1 j} C_{1 j}=a_{11} C_{11}+a_{12} C_{12}+\cdots+a_{1 n} C_{1 n}
$$

THEOREM 0.0.2 (Cofactor Expansion). If A is an $n \times n$ triangular matrix, then $\operatorname{det} A=a_{11} \cdot a_{22} \cdots a_{n n}$, that is, $\operatorname{det} A$ is the product of the diagonal entries of A.

THEOREM 0.0.3 (Triangular Determinants). The determinant of an $n \times n$ matrix A can be computed by cofactor expansion along any row or any column.
2. Key concepts today:

THEOREM 0.0.4 (Row Ops and Determinants). Let A is an $n \times n$ matrix.
(a) If a multiple of one row of A is added to another row to produce a new matrix B, then $\operatorname{det} B=\operatorname{det} A$.
(b) If two rows of A are interchanged to produce B, then $\operatorname{det} B=-\operatorname{det} A$.
(c) If one row of A is multiplied by k to produce B, then $\operatorname{det} B=k \operatorname{det} A$.

Using the last two theorems above and reduction to the echelon form of an $n \times n$ matrix A, we get:

THEOREM 0.0.5 (Another Connection: Determinants and Inverses). An $n \times n$ matrix A is invertible if and only if $\operatorname{det} A \neq 0$.

So we could add another condition to the Connections Theorem:
(q) $\operatorname{det} A \neq 0$

3. Read Section 3.2 and review Section 3.1 on Determinants.

(a) Practice: Page 177 Concepts: \#1-4 Calculations: \#5, 7, 11. Like an easy test question: \#15, 17, 19. Read in the text if we don't get this far \#21, 23, 25.

Class Work

1. Determine the following determinants using (A) reduction or (B) reduction and cofactor expansion combined. Check your answer with a partner.

$$
A=\left|\begin{array}{cccc}
1 & 3 & 2 & -4 \\
0 & 1 & 2 & -5 \\
2 & 7 & 6 & -3 \\
-3 & -10 & -7 & 2
\end{array}\right| \quad B=\left|\begin{array}{cccc}
1 & 5 & 4 & 1 \\
0 & -2 & -4 & 0 \\
3 & 5 & 4 & 1 \\
-6 & 5 & 5 & 0
\end{array}\right|
$$

2. Prove: If A is $n \times n$, then $\operatorname{det} A^{T}=\operatorname{det} A$.

Assignment 12

Due Wednesday in Class.

1. This question reviews several ideas. Suppose that $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a linear transformation. Let $\mathbf{u}=\left[\begin{array}{l}2 \\ 4\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{l}4 \\ 6\end{array}\right]$. Assume that $T(\mathbf{u})=T\left[\begin{array}{l}2 \\ 4\end{array}\right]=\left[\begin{array}{c}6 \\ -2\end{array}\right]$ and $T(\mathbf{v})=T\left[\begin{array}{l}4 \\ 6\end{array}\right]=\left[\begin{array}{l}1 \\ 1\end{array}\right]$.
(a) Determine $T(3 \mathbf{u}-2 \mathbf{v})$. Avoid using matrix multiplication.
(b) Determine $T\left(\mathbf{e}_{1}\right)$. Hint: Express \mathbf{e}_{1} as a linear combination of \mathbf{u} and \mathbf{v}. Then proceed as in part (a).
(c) Similarly determine $T\left(\mathbf{e}_{2}\right)$.
(d) Determine the standard matrix A for T.
(e) Is A invertible?
(f) Determine all the vectors \mathbf{w} such that $T(\mathbf{w})=\mathbf{b}=\left[\begin{array}{l}2 \\ 0\end{array}\right]$.
(g) Determine $T(\mathbf{x})=T\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$.
(h) Is T onto? Explain carefully citing appropriate theorems.
(i) Is T one-to-one? Explain carefully citing appropriate theorems.
2. (a) Section 3.2 page $175, \# 14$. Also decide whether the matrix is invertible.
(b) Section 3.2 page $175, \# 18,20$. Read the instructions. Use a theorem, not a calculation to determine the answers.
(c) Section 3.2 page 175, \#22.
(d) Section 3.2 page 175, \#26.
