Office Hour Help: M \& W 2:30-4:00, Tu 2:00-3:30, \& F 1:30-2:30 or by appointment. Website: http://math.hws.edu/~mitchell/Math204S16/index.php.

Reading, Practice, and Work

1. Read Section 4.1 on Vector Spaces and Subspaces. This material is more abstract.
(a) Close reading exercises: Try Practice Problem \#1 on page 195 and then try Exercise \# 1 on the same page.

Assignment 13

Due Wednesday after break. Prove the following theorems.

1. Prove: If A is $n \times n$, then $\operatorname{det} A^{T}=\operatorname{det} A$. (This means we can do column operations on a matrix to simplify calculating the determinant.)
2. Prove: If A is $n \times n$ and invertible, then $\operatorname{det} A^{-1}=\frac{1}{\operatorname{det} A}=(\operatorname{det} A)^{-1}$.
3. Prove: If A is square matrix n is a positive integer, then $\operatorname{det} A^{n}=(\operatorname{det} A)^{n}$. If you know how to do induction, try it that way.
4. Let A is $n \times n$ and let k be any scalar. Find a formula for $\operatorname{det}(k A)$ in terms of $\operatorname{det} A$.
5. A $n \times n$ invertible matrix U is orthogonal if $U^{-1}=U^{T}$. Prove that if U is orthogonal, then $\operatorname{det} U= \pm 1$.
6. An $n \times n$ matrix A is said to be conjugate to the $n \times n$ matrix B if there is some invertible $n \times n$ matrix M so that $A=M B M^{-1}$. Prove: If A is conjugate to B, then $\operatorname{det} A=\operatorname{det} B$.
7. Page 176, \#40.
8. Sebastien's Theorem. Consider these three off-diagonal matrices below.

$$
A=\left[\begin{array}{llll}
0 & 0 & 0 & a \\
0 & 0 & b & 0 \\
0 & c & 0 & 0 \\
d & 0 & 0 & 0
\end{array}\right] \quad B=\left[\begin{array}{lllll}
0 & 0 & 0 & 0 & a \\
0 & 0 & 0 & b & 0 \\
0 & 0 & c & 0 & 0 \\
0 & d & 0 & 0 & 0 \\
f & 0 & 0 & 0 & 0
\end{array}\right] \quad C=\left[\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & a \\
0 & 0 & 0 & 0 & b & 0 \\
0 & 0 & 0 & c & 0 & 0 \\
0 & 0 & d & 0 & 0 & 0 \\
0 & f & 0 & 0 & 0 & 0 \\
g & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

In each case, is the determinant of each the product of the diagonal elements? Show your work, justify your answer. Hint: Use row operations.
9. Bonus: Can you figure out for which size matrices Sebastien's Theorem holds?

