Office Hour Help: M & W 2:30–4:00, Tu 2:00–3:30, & F 1:30–2:30 or by appointment. Website: http://math.hws.edu/~mitchell/Math204S16/index.php.

Reading, Practice, and Work

- 1. Read Section 4.1 on Vector Spaces and Subspaces. This material is more abstract.
 - (*a*) Close reading exercises: Try Practice Problem #1 on page 195 and then try Exercise #1 on the same page.

Assignment 13

Due Wednesday after break. Prove the following theorems.

- **1.** Prove: If *A* is $n \times n$, then det $A^T = \det A$. (This means we can do column operations on a matrix to simplify calculating the determinant.)
- **2.** Prove: If *A* is $n \times n$ and invertible, then det $A^{-1} = \frac{1}{\det A} = (\det A)^{-1}$.
- **3.** Prove: If *A* is square matrix *n* is a positive integer, then det $A^n = (\det A)^n$. If you know how to do induction, try it that way.
- **4.** Let *A* is *n* × *n* and let *k* be any scalar. Find a formula for det(*kA*) in terms of det *A*.
- **5.** A $n \times n$ invertible matrix U is **orthogonal** if $U^{-1} = U^T$. Prove that if U is orthogonal, then det $U = \pm 1$.
- **6.** An $n \times n$ matrix A is said to be **conjugate** to the $n \times n$ matrix B if there is some invertible $n \times n$ matrix M so that $A = MBM^{-1}$. Prove: If A is conjugate to B, then det A = det B.
- **7.** Page 176, #40.
- 8. Sebastien's Theorem. Consider these three off-diagonal matrices below.

						Го	0	0	Ο	~7		0	0	0	0	0	a	
A =	Γ0	0	0	a			0 0 0	0 0 c	0 b 0 0	<i>u</i> 0 0 0		0	0	0	0	b	0	
	0	0	b	0	_	0						0	0	0	С	0	0	
	0	с	0	0	B =	0					C =	0	0	d	0	0	0	
	d	0	0	0		0	d	0				0	f	0	0	0	0	
	L			-		Lf	0	0	0	0]		8	0	0	0	0	0	

In each case, is the determinant of each the product of the diagonal elements? Show your work, justify your answer. Hint: Use row operations.

9. Bonus: Can you figure out for which size matrices Sebastien's Theorem holds?