Office Hour Help: M & W 2:30–4:00, Tu 2:00–3:30, & F 1:30–2:30 or by appointment. Website: http://math.hws.edu/~mitchell/Math204S16/index.php.

Reading and Practice

- See Assignment 13 due Wednesday on the back.
- 1. Review Exam 2 and the answers. See me as necessary.
- **2.** Today we will finish discussing determinants with an application to area and volume.
 - (*a*) Read Section 3.3 (we will not cover Cramer's Rule, but you may wish to read about it, especially if you are in Economics or Physics.
 - (*b*) Review Theorems 3.9 and 3.10. Practice: Page 184 #19 (draw the figure and determine the vectors that will provide the area), 21, 23, 27.
- **3.** Next time, we will discuss general **Vector Spaces**. Read **Section 4.1**. We will focus on the axioms of a vector space and and subspaces. Close reading: Try pages 195–196 #1–3 (these are about closure). Come in with questions.

Recent Results about Determinants

THEOREM 4.1.1 (Determinants and Products). If *A* and *B* are $n \times n$ matrices, then det(*AB*) = det *A* · det *B*.

COROLLARY 4.1.2. Let *A* be $n \times n$.

(a) If *m* is a positive integer, then det $A^m = (\det A)^m$.

(b) If A is invertible, then det
$$A^{-1} = \frac{1}{\det A} = (\det A)^{-1}$$

THEOREM 4.1.3. If *A* is $n \times n$, then det $A^T = \det A$.

THEOREM 4.1.4. Let A is $n \times n$ and let k be any scalar. Then det(kA) in terms of k^n det A.

THEOREM 4.1.5 (Area and Volume). If *A* is a 2×2 matrix, the area of the parallelogram determined by the columns of *A* is $|\det A|$. If *A* is a 3×3 matrix, the volume of the parallelepiped determined by the columns of *A* is $|\det A|$.

THEOREM 4.1.6 (Transformed Area and Volume). Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation determined by the 2 × 2 matrix *A*. If *S* is a parallelogram in \mathbb{R}^2 determined by **u** and **v**, then the area of the transformed parallelogram T(S) determined by $T(\mathbf{u})$ and $T(\mathbf{v})$ is given by

 $\{\text{area of } T(S)\} = |\det A| \cdot \{\text{area of } S\} = |\det A| \cdot |\det[\mathbf{u}\,\mathbf{v}]|.$

Similarly, for $T : \mathbb{R}^3 \to \mathbb{R}^3$ and the volume of a parallelepiped.

■ This means we can do column operations on a matrix to simplify calculating the determinant.

Assignment 13

Due Wednesday after break. Prove the following theorems.

- **1.** Prove: If A is $n \times n$, then det $A^T = \det A$. (This means we can do column operations on a matrix to simplify calculating the determinant.)
- **2.** Prove: If *A* is $n \times n$ and invertible, then det $A^{-1} = \frac{1}{\det A} = (\det A)^{-1}$.
- **3.** Prove: If *A* is square matrix *n* is a positive integer, then det $A^n = (\det A)^n$. If you know how to do induction, try it that way.
- **4.** Let *A* is *n* × *n* and let *k* be any scalar. Find a formula for det(*kA*) in terms of det *A*.
- **5.** A $n \times n$ invertible matrix U is **orthogonal** if $U^{-1} = U^T$. Prove that if U is orthogonal, then det $U = \pm 1$.
- **6.** An $n \times n$ matrix A is said to be **conjugate** to the $n \times n$ matrix B if there is some invertible $n \times n$ matrix M so that $A = MBM^{-1}$. Prove: If A is conjugate to B, then det A = det B.
- 7. Page 176, #40.
- 8. Sebastien's Theorem. Consider these three off-diagonal matrices.

							Γ∩	0	0	0	<i>a</i>]		0	0	0	0	0	a	
A =	0	0	0	a	P			0	0	0 1			0	0	0	0	b	0	
	0	0	b	0			0	0	0		<i>C</i> –	0	0	0	С	0	0		
	0	С	0	0		D =		0 1	C O	0		U =	0	0	d	0	0	0	
	d	0	0	0				и 0	0	0			0	f	0	0	0	0	
							L)	0	0	0	0]		8	0	0	0	0	0	

In each case, is the determinant of each the product of the diagonal elements? Show your work, justify your answer. Hint: Use row operations.

Real Bonus: Can you figure out for which size matrices Sebastien's Theorem holds?

9. Section 3.3 (Page 184–5) Exercises #20, 22, and 28.

10. Suppose that
$$A = \begin{bmatrix} a & b & c & d \\ e & f & g & h \\ i & j & k & l \\ m & n & o & p \end{bmatrix}$$
. If det $A = -3$, evaluate det $\begin{bmatrix} a & b & c - 2a & d \\ e & f & g - 2e & h \\ i & j & k - 2i & l \\ m & n & o - 2m & p \end{bmatrix}$.

11. Bonus: Find a formula (using determinants) for the area of a triangle whose vertices are **0**, **u**, and **v**. Explain why your formula is correct.