Office Hour Help: M \& W 2:30-4:00, Tu 2:00-3:30, \& F 1:30-2:30 or by appointment. Website: http://math.hws.edu/~mitchell/Math204S16/index.php.

Reading and Practice

See Assignment 13 due Wednesday on the back.

1. Review Exam 2 and the answers. See me as necessary.
2. Today we will finish discussing determinants with an application to area and volume.
(a) Read Section $3 \cdot 3$ (we will not cover Cramer's Rule, but you may wish to read about it, especially if you are in Economics or Physics.
(b) Review Theorems 3.9 and 3.10. Practice: Page 184 \#19 (draw the figure and determine the vectors that will provide the area), 21, 23, 27.
3. Next time, we will discuss general Vector Spaces. Read Section 4.1. We will focus on the axioms of a vector space and and subspaces. Close reading: Try pages 195-196 \#1-3 (these are about closure). Come in with questions.

Recent Results about Determinants

THEOREM 4.1.1 (Determinants and Products). If A and B are $n \times n$ matrices, then $\operatorname{det}(A B)=$ $\operatorname{det} A \cdot \operatorname{det} B$.

COROLLARY 4.1.2. Let A be $n \times n$.
(a) If m is a positive integer, then $\operatorname{det} A^{m}=(\operatorname{det} A)^{m}$.
(b) If A is invertible, then $\operatorname{det} A^{-1}=\frac{1}{\operatorname{det} A}=(\operatorname{det} A)^{-1}$.

THEOREM 4.1.3. If A is $n \times n$, then $\operatorname{det} A^{T}=\operatorname{det} A$.

* This means we can do column operations on a matrix to simplify calculating the determinant.

THEOREM 4.1.4. Let A is $n \times n$ and let k be any scalar. Then $\operatorname{det}(k A)$ in terms of $k^{n} \operatorname{det} A$.

THEOREM 4.1.5 (Area and Volume). If A is a 2×2 matrix, the area of the parallelogram determined by the columns of A is $|\operatorname{det} A|$. If A is a 3×3 matrix, the volume of the parallelepiped determined by the columns of A is $|\operatorname{det} A|$.

THEOREM 4.1.6 (Transformed Area and Volume). Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation determined by the 2×2 matrix A. If S is a parallelogram in \mathbb{R}^{2} determined by \mathbf{u} and \mathbf{v}, then the area of the transformed parallelogram $T(S)$ determined by $T(\mathbf{u})$ and $T(\mathbf{v})$ is given by

$$
\{\text { area of } T(S)\}=|\operatorname{det} A| \cdot\{\text { area of } S\}=|\operatorname{det} A| \cdot|\operatorname{det}[\mathbf{u} \mathbf{v}]| .
$$

Similarly, for $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ and the volume of a parallelepiped.

Assignment 13

Due Wednesday after break. Prove the following theorems.

1. Prove: If A is $n \times n$, then $\operatorname{det} A^{T}=\operatorname{det} A$. (This means we can do column operations on a matrix to simplify calculating the determinant.)
2. Prove: If A is $n \times n$ and invertible, then $\operatorname{det} A^{-1}=\frac{1}{\operatorname{det} A}=(\operatorname{det} A)^{-1}$.
3. Prove: If A is square matrix n is a positive integer, then $\operatorname{det} A^{n}=(\operatorname{det} A)^{n}$. If you know how to do induction, try it that way.
4. Let A is $n \times n$ and let k be any scalar. Find a formula for $\operatorname{det}(k A)$ in terms of $\operatorname{det} A$.
5. A $n \times n$ invertible matrix U is orthogonal if $U^{-1}=U^{T}$. Prove that if U is orthogonal, then $\operatorname{det} U= \pm 1$.
6. An $n \times n$ matrix A is said to be conjugate to the $n \times n$ matrix B if there is some invertible $n \times n$ matrix M so that $A=M B M^{-1}$. Prove: If A is conjugate to B, then $\operatorname{det} A=\operatorname{det} B$.
7. Page 176, \#40.
8. Sebastien's Theorem. Consider these three off-diagonal matrices.

$$
A=\left[\begin{array}{llll}
0 & 0 & 0 & a \\
0 & 0 & b & 0 \\
0 & c & 0 & 0 \\
d & 0 & 0 & 0
\end{array}\right] \quad B=\left[\begin{array}{lllll}
0 & 0 & 0 & 0 & a \\
0 & 0 & 0 & b & 0 \\
0 & 0 & c & 0 & 0 \\
0 & d & 0 & 0 & 0 \\
f & 0 & 0 & 0 & 0
\end{array}\right] \quad C=\left[\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & a \\
0 & 0 & 0 & 0 & b & 0 \\
0 & 0 & 0 & c & 0 & 0 \\
0 & 0 & d & 0 & 0 & 0 \\
0 & f & 0 & 0 & 0 & 0 \\
g & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

In each case, is the determinant of each the product of the diagonal elements? Show your work, justify your answer. Hint: Use row operations.
Bonus: Can you figure out for which size matrices Sebastien's Theorem holds?
\qquad Added Monday
9. Section $3 \cdot 3$ (Page 184-5) Exercises \#20, 22, and 28.
10. Suppose that $A=\left[\begin{array}{llll}a & b & c & d \\ e & f & g & h \\ i & j & k & l \\ m & n & o & p\end{array}\right]$. If $\operatorname{det} A=-3$, evaluate $\operatorname{det}\left[\begin{array}{cccc}a & b & c-2 a & d \\ e & f & g-2 e & h \\ i & j & k-2 i & l \\ m & n & o-2 m & p\end{array}\right]$.
11. Bonus: Find a formula (using determinants) for the area of a triangle whose vertices are $\mathbf{0}, \mathbf{u}$, and \mathbf{v}. Explain why your formula is correct.

