Reading and Practice. Today we discuss general Vector Spaces. Read Section 4.1. Next time we will discuss subspaces (see pp. 193-195). Try pages 195-196 \#1-4 (these are about closure) and 25-30. After reading about subspaces try \#5, 7, 9, 11. Hand In problems on next pages for next class.

Vector Spaces. The algebraic properties of vectors in \mathbb{R}^{n} occur other mathematical systems. In general, we can think of vector space as a collection of objects that behave just as vectors do in \mathbb{R}^{n} under appropriate operations of addition and scalar multiplication.

DEFINITION 4.1.1. A vector space is a nonempty set \mathbb{V} of elements called vectors on which are defined two operations called addition and scalar multiplication that satisfy the ten axioms below. (The axioms must hold for all \mathbf{u}, \mathbf{v}, and \mathbf{w} in \mathbb{V} and for all scalars c and d.)

1. $\mathbf{u}+\mathbf{v}$ is in \qquad . (Closure)
2. $\mathbf{u}+\mathbf{v}=$ \qquad . \qquad
3. $(\mathbf{u}+\mathbf{v})+\mathbf{w}=$ \qquad . \qquad
4. There is a vector (called the zero vector) $\mathbf{0} \in \mathbb{V}$ so that $\mathbf{u}+\mathbf{0}=$ \qquad for all $\mathbf{u} \in \mathbb{V}$. (Additive Identity)
5. For each $\mathbf{u} \in \mathbb{V}$, there is a vector $-\mathbf{u} \in \mathbb{V}$ so that $\mathbf{u}+(-\mathbf{u})=$ \qquad . (Additive Inverses)
6. $c u$ is in \qquad . (Closure)
7. $c(\mathbf{u}+\mathbf{v})=$ \qquad . (
8. $(c+d) \mathbf{u}=$ \qquad . \qquad
9. $(c d) \mathbf{u}=$ \qquad .
10. $1 \mathbf{u}=$ \qquad (Normalization)

Example 1. Let $\mathbb{V}=M_{22}=\left\{\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]: a, b, c, d \in \mathbb{R}\right\}$. In this context $\mathbf{0}=$ $[\quad]$. And if $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, then $-A=[\square$. Most of the vector space axioms follow from Theorem 1 in Chapter 2. Which axioms still remain to be verified? Are they true (obvious)? So is M_{22} is a vector space?

Example 1'. These same ideas apply to

$$
\mathbb{V}=M_{m n}=\left\{A=\left[a_{i j}\right]: A \text { is an } m \times n \text { matrix with } a_{i j} \in \mathbb{R}\right\} .
$$

What is the additive identity matrix $\mathbf{0}$? What matrix is the additive inverse $-A$?
Example 2. $\mathbb{V}=\mathbb{R}^{n}$ with the usual operations of addition and scalar multiplication. The list of properties on page 27 ensures that \mathbb{R}^{n} is a vector space.
Algebraic Properties of \mathbb{R}^{n} : For all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^{n}$ and scalars c and d. Then $\mathbf{u}+\mathbf{v} \in$ \mathbb{R}^{n} and $c \mathbf{u} \in \mathbb{R}^{n}$. Further,

$$
\begin{array}{ll}
\text { (1) } \mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u} & \text { (2) }(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w}) \\
\text { (3) } \mathbf{u}+\mathbf{0}=\mathbf{0}+\mathbf{u} & \text { (4) } \mathbf{u}+(-\mathbf{u})=-\mathbf{u}+\mathbf{u}=\mathbf{0} \\
\text { (5) } c(\mathbf{u}+\mathbf{v})=c \mathbf{u}+c \mathbf{v} & \text { (6) }(c+d) \mathbf{u}=c \mathbf{u}+d \mathbf{u} \\
\text { (7) } c(d \mathbf{u})=(c d) \mathbf{u} & \text { (8) } 1 \mathbf{u}=\mathbf{u}
\end{array}
$$

THEOREM 2.1.1. Let A, B, and C be matrices of the same size and let r and s be scalars.
(1) $A+B=B+A$
(2) $(A+B)+C=A+(B+C)$
(3) $A+0=A$, where 0 is the zero matrix
(4) $r(A+B)=r A+r B$
(5) $(r+s) A=r A+s A$
(6) $r(s A)=(r s) A$.

Here $-\mathbf{u}$ denotes $(-1) \mathbf{u}$.

Example 3. This example will help you understand that vector spaces depend on both the set and how the operations of addition and scalar multiplication are defined. Let $\mathbb{R}^{+}=\{x \in \mathbb{R}: x>0\}$, the set of positive real numbers. Since the operations are not the usual ones we will use a different symbol. Define 'addition' as multiplication: $x \oplus y=x y$ and 'scalar multiplication' as raising to a power: $c \odot x=x^{c}$. Using these operations:
(1) Verify Axiom $1 \mathbb{R}^{+}$is closed under \oplus. Let $x, y \in \mathbb{R}^{+}$. Show $x \oplus y \in \mathbb{R}^{+}$.

VERIFICATION:

Always start with the appropriate set up. In this case: "Let $x, y \in \mathbb{R}^{+} \ldots$ "
(2) Verify Axiom 2: $x \oplus y=y \oplus x$.
(3) Verify Axiom 4; find the zero vector or additive identity z so that $x \oplus z=x$ for all $x \in \mathbb{R}^{+}$.
(4) Verify Axiom 8; $(c+d) \odot(x)=(c \odot x) \oplus(d \odot x)$.

Assignment 14A Due Friday. Name: \qquad
(5) Verify Axiom 6: \mathbb{R}^{+}is closed under scalar multiplication, $c \odot x \in \mathbb{R}^{+}$.
(6) Verify Axiom 3: $(x \oplus y) \oplus z=x \oplus(y \oplus z)$.
(7) Verify Axiom 5; find the additive inverse $\ominus x$ so that $x \oplus(\ominus x)=1$ where 1 is the identity that we found on the previous page.
(8) Verify Axiom 7: $c \odot(x \oplus y)=(c \odot x) \oplus(c \odot y)$.
(9) Verify Axiom 9: $(c d) \odot x=c \odot(d \odot x)$.
(10) Verify Axiom 10: $1 \odot x=x$.

Example 4. Let $\mathbb{V}=\left\{\left[\begin{array}{l}a \\ b\end{array}\right]: a, b \in \mathbb{R}\right\}$. Define the operation of addition the usual way, but define scalar multiplication differently:

$$
\left[\begin{array}{l}
a \\
b
\end{array}\right]+\left[\begin{array}{l}
c \\
d
\end{array}\right]=\left[\begin{array}{l}
a+c \\
b+d
\end{array}\right] \quad r \odot\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{c}
r a \\
b
\end{array}\right]
$$

Notice that both operations result in elements of \mathbb{V} again so \mathbb{V} is closed and Axioms 1 and 6 hold. Further, since addition is the usual operation of vector addition, we know that the Addition Axioms 2-5 also hold.

Determine whether \mathbb{V} is a vector space by checking the remaining Multiplicative Axioms $7-10$. Note: Use r and s as scalars not c and d as in the axioms since we have used c and d as components in the vectors.

Additional Problems from the Text. Do Page 197 Exercises \#26 and 28. For each problem copy the proof and fill in the missing axiom.

EXAMPLE: Let $n \geq 0$ be an integer and let

$$
\mathbf{P}_{n}=\text { the set of all polynomials of degree at most } n \geq 0 \text {. }
$$

Members of \mathbf{P}_{n} have the form

$$
\mathbf{p}(t)=a_{0}+a_{1} t+a_{2} t^{2}+\cdots+a_{n} t^{n}
$$

where $a_{0}, a_{1}, \ldots, a_{n}$ are real numbers and t is a real variable. The set \mathbf{P}_{n} is a vector space:

Let $\mathbf{p}(t)=a_{0}+a_{1} t+\cdots+a_{n} t^{n}$ and $\mathbf{q}(t)=b_{0}+b_{1} t+\cdots+b_{n} t^{n}$. Let c be a scalar.

Axiom 1:

The polynomial $\mathbf{p}+\mathbf{q}$ is defined as follows: $(\mathbf{p}+\mathbf{q})(t)=\mathbf{p}(t)+\mathbf{q}(t)$. Therefore,

$$
\begin{gathered}
(\mathbf{p}+\mathbf{q})(t)=\mathbf{p}(t)+\mathbf{q}(t) \\
=(\ldots)+(\ldots) t+\cdots+\left(\ldots \quad ـ^{(} \quad t^{n}\right.
\end{gathered}
$$

which is also a \qquad of degree at most \qquad . So $\mathbf{p}+\mathbf{q}$ is in \mathbf{P}_{n}.

Axiom 4:

$$
\begin{gathered}
\begin{array}{c}
\mathbf{0}=0+0 t+\cdots+0 t^{n} \\
\left(\text { zero vector in } \mathbf{P}_{n}\right)
\end{array} \\
(\mathbf{p}+\mathbf{0})(t)=\mathbf{p}(t)+\mathbf{0}=\left(a_{0}+0\right)+\left(a_{1}+0\right) t+\cdots+\left(a_{n}+0\right) t^{n} \\
=a_{0}+a_{1} t+\cdots+a_{n} t^{n}=\mathbf{p}(t) \\
\text { and so } \mathbf{p}+\mathbf{0}=\mathbf{p}
\end{gathered}
$$

Axiom 6:

$$
(c \mathbf{p})(t)=c \mathbf{p}(t)=(\ldots)+(\ldots) t+\cdots+(\ldots \quad) t^{n}
$$

which is in \mathbf{P}_{n}.

Axiom 5 (additive inverse) If $\mathbf{p}=a_{0}+a_{1} t+\cdots+a_{n} t \in \mathbb{P}_{n}$, then $-\mathbf{p}=$ \qquad because

$$
\mathbf{p}+(-\mathbf{p})=(\quad)+(\quad) t+\cdots+(\quad) t^{n}=
$$

Axiom 2 (commutativity) If $\mathbf{p}=a_{0}+a_{1} t+\cdots+a_{n} t \in \mathbb{P}_{n}$ and $\mathbf{q}=b_{0}+b_{1} t+\cdots+$ $b_{n} t \in \mathbb{P}_{n}$, then

$$
\mathbf{p}+\mathbf{q}=(\quad)+(\quad) t+\cdots+(\quad) t^{n}=
$$

while

$$
\mathbf{q}+\mathbf{p}=(\quad)+(\quad) t+\cdots+(\quad) t^{n}=
$$

But addition of real numbers is commutative, so $a_{i}+b_{i}=b_{i}+a_{i}$, so $\mathbf{p}+\mathbf{q}=\mathbf{q}+\mathbf{p}$.
Axiom 3 (associativity) Using the same idea, if \mathbf{p} and \mathbf{q} are as above, and $\mathbf{r}=c_{0}+$ $c_{1} t+\cdots c_{n} t \in \mathbb{P}_{n}$, then $(\mathbf{p}+\mathbf{q})+\mathbf{r}=\mathbf{p}+(\mathbf{q}+\mathbf{r})$ because

$$
\left[\left(a_{i}+b_{i}\right)+c_{i}\right]=[\square]
$$

Axiom 7 (distributivity, vector addition) If c is a scalar, then

$$
\begin{aligned}
c(\mathbf{p}+\mathbf{q}) & =c\left[\left(a_{0}+b_{0}\right)+\left(a_{1}+b_{1}\right) t+\cdots+\left(a_{n}+b_{n}\right) t^{n}\right] \\
& =\left(c a_{0}+c b_{0}\right)+\left(c a_{1}+c b_{1}\right) t+\cdots+\left(c a_{n}+c b_{n}\right) t^{n} \\
& =
\end{aligned}
$$

Axiom 8 (distributivity, scalar addition) If c and d are scalars, then

$$
\begin{aligned}
(c+d) \mathbf{p} & =(c+d)\left[a_{0}+a_{1} t+\cdots+a_{n} t^{n}\right] \\
& = \\
& =
\end{aligned}
$$

\qquad

Axiom 9 (scalar multiplication)If c and d are scalars, then

$$
\begin{aligned}
c(d \mathbf{p}) & =c\left[d a_{0}+d a_{1} t+\cdots+d a_{n} t^{n}\right] \\
& = \\
& =
\end{aligned}
$$

\qquad

Axiom 10 (normalization) Is $1 \mathbf{p}=\mathbf{p}$?

$$
1 \mathbf{p}=1\left[a_{0}+a_{1} t+\cdots+a_{n} t^{n}\right]=
$$

\qquad $=$ \qquad -.

