Reading and Practice. Today we discuss general Vector Spaces. Read **Section 4.1**. Next time we will discuss subspaces (see pp. 193–195). Try pages 195–196 #1–4 (these are about closure) and 25–30. After reading about subspaces try #5, 7, 9, 11. **Hand In problems on next pages** for next class.

Vector Spaces. The algebraic properties of vectors in \mathbb{R}^n occur other mathematical systems. In general, we can think of **vector space** as a collection of objects that behave just as vectors do in \mathbb{R}^n under appropriate operations of addition and scalar multiplication.

DEFINITION 4.1.1. A **vector space** is a nonempty set \mathbb{V} of elements called **vectors** on which are defined two operations called **addition** and **scalar multiplication** that satisfy the ten axioms below. (The axioms must hold for all **u**, **v**, and **w** in \mathbb{V} and for all scalars *c* and *d*.)

- **1. u** + **v** is in _____. (Closure)
- 2. $\mathbf{u} + \mathbf{v} =$ ______. (______) 3. $(\mathbf{u} + \mathbf{v}) + \mathbf{w} =$ ______. (_______)
- **4.** There is a vector (called the zero vector) $0 \in \mathbb{V}$ so that u + 0 = ______ for all $u \in \mathbb{V}$. (Additive Identity)
- **5.** For each $u \in V$, there is a vector $-u \in V$ so that u + (-u) = _____. (Additive Inverses)
- **6.** *c***u** is in _____. (Closure)
- **7.** $c(\mathbf{u} + \mathbf{v}) =$ _____. (_____)
- 8. $(c+d)\mathbf{u} =$ _____. (_____)
- 9. $(cd)\mathbf{u} =$ _____.

10.
$$1\mathbf{u} =$$
______. (Normalization)

Example 1. Let
$$\mathbb{V} = M_{22} = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : a, b, c, d \in \mathbb{R} \right\}$$
. In this context $\mathbf{0} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. And if $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, then $-A = \begin{bmatrix} & & \\ & & \\ & & \\ & & \end{bmatrix}$. Most

of the vector space axioms follow from Theorem 1 in Chapter 2. Which axioms still remain to be verified? Are they true (obvious)? So is M_{22} is a vector space?

Example 1'. These same ideas apply to

 $\mathbb{V} = M_{mn} = \{A = [a_{ij}] : A \text{ is an } m \times n \text{ matrix with } a_{ij} \in \mathbb{R} \}.$

What is the additive identity matrix **0**? What matrix is the additive inverse -A?

Example 2. $\mathbb{V} = \mathbb{R}^n$ with the usual operations of addition and scalar multiplication. The list of properties on page 27 ensures that \mathbb{R}^n is a vector space.

Algebraic Properties of \mathbb{R}^n : For all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^n$ and scalars c and d. Then $\mathbf{u} + \mathbf{v} \in \mathbb{R}^n$ and $c\mathbf{u} \in \mathbb{R}^n$. Further,

(1) $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$ (2) $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$ (3) $\mathbf{u} + \mathbf{0} = \mathbf{0} + \mathbf{u}$ (4) $\mathbf{u} + (-\mathbf{u}) = -\mathbf{u} + \mathbf{u} = \mathbf{0}$ (5) $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$ (6) $(c + d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$ (7) $c(d\mathbf{u}) = (cd)\mathbf{u}$ (8) $1\mathbf{u} = \mathbf{u}$ **THEOREM 2.1.1.** Let A, B, and C be matrices of the same size and let r and s be scalars.

- (1) A + B = B + A
 (2) (A + B) + C = A + (B + C)
 (3) A + 0 = A, where 0 is the zero matrix
 (4) r(A + B) = rA + rB
 (5) (r + s)A = rA + sA
 - $(6) \ r(sA) = (rs)A.$

Here $-\mathbf{u}$ denotes $(-1)\mathbf{u}$.

Day25-16.tex

Example 3. This example will help you understand that vector spaces depend on both the set and how the operations of addition and scalar multiplication are defined. Let $\mathbb{R}^+ = \{x \in \mathbb{R} : x > 0\}$, the set of positive real numbers. Since the operations are not the usual ones we will use a different symbol. Define 'addition' as multiplication: $x \oplus y = xy$ and 'scalar multiplication' as raising to a power: $c \odot x = x^c$. Using these operations:

(1) Verify Axiom 1 \mathbb{R}^+ is closed under \oplus . Let $x, y \in \mathbb{R}^+$. Show $x \oplus y \in \mathbb{R}^+$.

VERIFICATION:

Always start with the appropriate set up. In this case: "Let $x, y \in \mathbb{R}^+ \dots$ "

(2) Verify Axiom 2: $x \oplus y = y \oplus x$.

(3) Verify Axiom 4; find the zero vector or additive identity z so that $x \oplus z = x$ for all $x \in \mathbb{R}^+$.

(4) Verify Axiom 8; $(c+d) \odot (x) = (c \odot x) \oplus (d \odot x)$.

(5) Verify Axiom 6: \mathbb{R}^+ is closed under scalar multiplication, $c \odot x \in \mathbb{R}^+$.

(6) Verify Axiom 3: $(x \oplus y) \oplus z = x \oplus (y \oplus z)$.

(7) Verify Axiom 5; find the additive inverse $\ominus x$ so that $x \oplus (\ominus x) = 1$ where 1 is the identity that we found on the previous page.

(8) Verify Axiom 7: $c \odot (x \oplus y) = (c \odot x) \oplus (c \odot y)$.

(9) Verify Axiom 9: $(cd) \odot x = c \odot (d \odot x)$.

(10) Verify Axiom 10: $1 \odot x = x$.

Example 4. Let $\mathbb{V} = \left\{ \begin{bmatrix} a \\ b \end{bmatrix} : a, b \in \mathbb{R} \right\}$. Define the operation of addition the usual way, but define scalar multiplication differently:

$$\left[\begin{array}{c}a\\b\end{array}\right] + \left[\begin{array}{c}c\\d\end{array}\right] = \left[\begin{array}{c}a+c\\b+d\end{array}\right] \qquad \qquad r \odot \left[\begin{array}{c}a\\b\end{array}\right] = \left[\begin{array}{c}ra\\b\end{array}\right].$$

Notice that both operations result in elements of \mathbb{V} again so \mathbb{V} is closed and Axioms 1 and 6 hold. Further, since addition is the usual operation of vector addition, we know that the Addition Axioms 2–5 also hold.

Determine whether \mathbb{V} is a vector space by checking the remaining Multiplicative Axioms 7–10. Note: Use *r* and *s* as scalars not *c* and *d* as in the axioms since we have used *c* and *d* as components in the vectors.

Additional Problems from the Text. Do Page 197 Exercises #26 and 28. For each problem **copy the proof** and fill in the missing axiom.

EXAMPLE: Let $n \ge 0$ be an integer and let

 \mathbf{P}_n = the set of all polynomials of degree at most $n \ge 0$.

Members of \mathbf{P}_n have the form

$$\mathbf{p}(t) = a_0 + a_1 t + a_2 t^2 + \dots + a_n t^n$$

where a_0, a_1, \ldots, a_n are real numbers and t is a real variable. The set **P**_n is a vector space:

Let $\mathbf{p}(t) = a_0 + a_1t + \dots + a_nt^n$ and $\mathbf{q}(t) = b_0 + b_1t + \dots + b_nt^n$. Let *c* be a scalar.

Axiom 1:

The polynomial $\mathbf{p} + \mathbf{q}$ is defined as follows: $(\mathbf{p} + \mathbf{q})(t) = \mathbf{p}(t) + \mathbf{q}(t)$. Therefore,

 $(\mathbf{p} + \mathbf{q})(t) = \mathbf{p}(t) + \mathbf{q}(t)$

 $= (___) + (___)t + \dots + (___)t^n$

which is also a ______ of degree at most _____. So $\mathbf{p} + \mathbf{q}$ is in \mathbf{P}_n .

Axiom 4:

 $0 = 0 + 0t + \dots + 0t^n$ (zero vector in \mathbf{P}_n)

 $(\mathbf{p} + \mathbf{0})(t) = \mathbf{p}(t) + \mathbf{0} = (a_0 + 0) + (a_1 + 0)t + \dots + (a_n + 0)t^n$

 $= a_0 + a_1t + \cdots + a_nt^n = \mathbf{p}(t)$

and so $\mathbf{p} + \mathbf{0} = \mathbf{p}$

Axiom 6:

 $(c\mathbf{p})(t) = c\mathbf{p}(t) = (___) + (__)t + \dots + (__)t^n$

which is in \mathbf{P}_n .

Axiom 5 (additive inverse) If $\mathbf{p} = a_0 + a_1 t + \dots + a_n t \in \mathbb{P}_n$, then $-\mathbf{p} =$ _______because

 $\mathbf{p} + (-\mathbf{p}) = () + () t + \dots + () t^n = \underline{ }.$

Axiom 2 (commutativity) If $\mathbf{p} = a_0 + a_1t + \cdots + a_nt \in \mathbb{P}_n$ and $\mathbf{q} = b_0 + b_1t + \cdots + b_nt \in \mathbb{P}_n$, then

 $\mathbf{p} + \mathbf{q} = () + () t + \dots + () t^n = \underline{ },$

while

 $\mathbf{q} + \mathbf{p} = () + () t + \dots + () t^n = \underline{\qquad}.$

But addition of real numbers is commutative, so $a_i + b_i = b_i + a_i$, so $\mathbf{p} + \mathbf{q} = \mathbf{q} + \mathbf{p}$.

Axiom 3 (associativity) Using the same idea, if **p** and **q** are as above, and $\mathbf{r} = c_0 + c_1t + \cdots + c_nt \in \mathbb{P}_n$, then $(\mathbf{p} + \mathbf{q}) + \mathbf{r} = \mathbf{p} + (\mathbf{q} + \mathbf{r})$ because

 $[(a_i+b_i)+c_i] = [___].$

Axiom 7 (distributivity, vector addition) If *c* is a scalar, then

$$c(\mathbf{p} + \mathbf{q}) = c[(a_0 + b_0) + (a_1 + b_1)t + \dots + (a_n + b_n)t^n]$$

= $(ca_0 + cb_0) + (ca_1 + cb_1)t + \dots + (ca_n + cb_n)t^n$
= _____.

Axiom 8 (distributivity, scalar addition) If c and d are scalars, then

$$(c+d)\mathbf{p} = (c+d)[a_0 + a_1t + \dots + a_nt^n]$$
$$= \underline{\qquad}$$
$$= \underline{\qquad}$$

Axiom 9 (scalar multiplication)If *c* and *d* are scalars, then

$$c(d\mathbf{p}) = c[da_0 + da_1t + \dots + da_nt^n]$$

= _____.

Axiom 10 (normalization) Is $1\mathbf{p} = \mathbf{p}$?

 $1\mathbf{p} = \mathbf{1}[a_0 + a_1 t + \dots + a_n t^n] = \underline{\qquad}$

So all 10 axioms are satisfied, so \mathbb{P}_n is a vector space.

Day25-16.tex