Reading and Practice

1. Re-read Section 4.2. Null spaces and column spaces are our first important uses of subspaces. We will deal with linear transformations on Friday. We will connect the concepts of $\operatorname{Nul} A$ and $\operatorname{Col} A$ to previous results. The blue box on page 230 is one connection. HOWEVER, if A is a square $(n \times n)$ think about ways to connect the Connections Theorem to $\operatorname{Nul} A$ and $\mathrm{Col} A$. Make up your own new theorems.
2. 5-minute Quiz on Friday on key definitions so far in Chapter 4: vector space, subspace, null space and column space of matrix A, and the key theorems so far in Chapter 4: (1) $\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ is a subspace of \mathbb{V}; (2) If A is $m \times n$, then Nul A is a subspace of \mathbb{R}^{n}. (3) If A is $m \times n$, then $\operatorname{Col} A$ is a subspace of \mathbb{R}^{m}.
3. Practice: Section 4.2. Page 205-206: \#1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25.
4. Coming up next: The kernel of a linear transformation T (it turns out to be the same as the null space of the standard matrix of T) and the range of T (which turns out to be the column space of A).

Today's Key Concepts

DEFINITION 4.1.1. The null space of an $m \times n$ matrix A is the set of all solutions to the homogeneous equation $A \mathbf{x}=\mathbf{0}$.

$$
\operatorname{Nul} A=\left\{\mathbf{x} \in \mathbb{R}^{n}: A \mathbf{x}=\mathbf{0}\right\}
$$

THEOREM 4.1.2 (Nul A is a Subspace). The null space of an $m \times n$ matrix A is a subspace of \mathbb{R}^{n}.

DEFINITION 4.1.3. The column space of an $m \times n$ matrix $A=\left[\begin{array}{lll}\mathbf{a}_{1} & \cdots & \mathbf{a}_{n}\end{array}\right]$ is the set of linear combinations of the columns of A. That is $\operatorname{Col} A=\operatorname{Span}\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right\}$.

THEOREM 4.1.4 ($\mathrm{Col} A$ is a Subspace). If A is an $m \times n$ matrix, the $\operatorname{Col} A$ is a subspace of \mathbb{R}^{m}.

Hand In Friday

1. Let S be the set of $n \times n$ symmetric matrices, i.e., $\mathrm{S}=\left\{A \in M_{n \times n}: A=A^{T}\right\}$. Determine whether S is a subspace of $M_{n \times n}$.
2. Thinking ahead. Now that we have defined general vector spaces we can generalize the idea of a linear transformation.

DEFINITION 4.1.5. If \mathbb{V} and \mathbb{W} are vector spaces, then $T: \mathbb{V} \rightarrow \mathbb{W}$ is a linear transformation if

1. $T(\mathbf{u}+\mathbf{v})=T(\mathbf{u})+T(\mathbf{v})$ for all $\mathbf{u}, \mathbf{v} \in \mathbb{V}$
2. $T(c \mathbf{u})=c T(\mathbf{u})$ for all $\mathbf{u} \in \mathbb{V}$ and all scalars c.

DEFINITION 4.1.6. $T: \mathbb{V} \rightarrow \mathbb{W}$ is onto if for every $\mathbf{w} \in \mathbb{W}$, there is at least one vector $\mathbf{v} \in$ \mathbb{V} so that $T(\mathbf{v})=\mathbf{w}$.
(a) Let $T: \mathbb{R}^{2} \rightarrow M_{2 \times 2}$ by $T\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)=\left[\begin{array}{cc}x & y \\ y & 2 x\end{array}\right]$. Prove T is a linear transformation.
(b) Determine whether T is one-to-one. (Assume $T(\mathbf{u})=T(\mathbf{v})$. Must $\mathbf{u}=\mathbf{v}$?)
3. This is a useful fact: Page 197 \#30. Hint: First do something to "get rid of" the scalar c and use one of the properties from \#26-29 on p. 197. Then use an Axiom.
4. Let $\mathbb{V}=\left\{\left[\begin{array}{l}a \\ b\end{array}\right]: a, b \in \mathbb{R}\right\}$. Define addition \oplus in an unusual way and scalar multiplication as usual:

$$
\left[\begin{array}{l}
a \\
b
\end{array}\right] \oplus\left[\begin{array}{l}
c \\
d
\end{array}\right]=\left[\begin{array}{c}
a^{2}+c^{2} \\
b+d
\end{array}\right] \quad r\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{c}
r a \\
r b
\end{array}\right]
$$

Both operations result in elements of \mathbb{V} so Axioms 1 and 6 hold. Carefully determine whether Axiom 3 holds.
5. Let A be the matrix in Problem 3 on page 22 in Section 1.2. Give explicit descriptions of $\operatorname{Nul} A$ and $\operatorname{Col} A$, i.e., as spans of sets of vectors.
6. These are simple checks on today's work. Justify each answer in one sentence.
(a) Page 205 \#2
(b) Page 206 \#10 (see Example 2)
(c) Page 206 \# 16
(d) Page 206 \#18
(e) Page 206 \#24
7. Assume A is $n \times n$. Prove: If $\operatorname{Nul} A=\{0\}$, then $\operatorname{det} A^{T} \neq 0$.

Hand In Monday

1. Let $\mathbb{U}=\left\{\left[\begin{array}{c}a+2 \\ 2 a \\ b-a\end{array}\right]: a, b \in \mathbb{R}\right\}$. Determine whether \mathbb{U} is a subspace of \mathbb{R}^{3}.

Explain your answer.
2. We know that the set of all functions \mathcal{F} defined on $(-\infty, \infty)$ is a vector space. Let $\mathbb{W}=\left\{f \in \mathcal{F}: \int_{0}^{2 \pi} f(x) d x=0\right\}$.
(a) List two familiar functions that are in \mathbb{W}.
(b) Determine whether \mathbb{W} is a subspace of \mathbb{F}. You will need to use your Calculus 2 knowledge here.
3. (a) Again let \mathcal{F} be the vector space of of all functions defined on $(-\infty, \infty)$. Let $\mathbb{C}=\{f \in \mathbb{F}: f$ is continuous $\}$. Give two examples of vectors in \mathbb{C}.
(b) Determine whether \mathbb{C} is a subspace of \mathcal{F}. Use your Calculus 1 knowledge here. (E.g., Briggs and Cochran: Calculus text, section 2.6.)
4. Again let $\mathbb{C}=\{f \in \mathcal{F}: f$ is continuous $\}$. Let $T: \mathbb{C} \rightarrow \mathbb{R}$ by $T(f)=\int_{0}^{1} f(x) d x$. Show that T is a linear transformation. You will need to use your Calculus 2 knowledge again.
5. A few more will be added.
Solving $A \mathbf{x}=\mathbf{0}$ yields an explicit description of Nul A.

Observations:

1. Spanning set of $\mathrm{Nul} A$, found using the method in the last example, is automatically linearly
independent because of the positions of the 1's corresponding to the free variables:
$c_{1}\left[\begin{array}{c}-2 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right]+c_{2}\left[\begin{array}{c}-13 \\ 0 \\ 6 \\ 1 \\ 0\end{array}\right]+c_{3}\left[\begin{array}{c}-33 \\ 0 \\ 15 \\ 0 \\ 1\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right] \Rightarrow c_{1}=-\quad c_{2}=-\quad c_{3}=-$
2. If Nul $\mathrm{A} \neq\{\mathbf{0}\}$, the the number of vectors in the spanning set for $\mathrm{Nul} A$ equals the number of
free variables in $A \mathbf{x}=\mathbf{0}$.
4.2 Null Spaces, Column Spaces, \& Linear Transformations

\sim

The Contrast Between Nul A and $\operatorname{Col} A$

EXAMPLE: Let $A=\left[\begin{array}{rrr}1 & 2 & 3 \\ 2 & 4 & 7 \\ 3 & 6 & 10 \\ 0 & 0 & 1\end{array}\right]$.
(a) The column space of A is a subspace of \mathbf{R}^{k} where $k=$ \qquad .
(b) The null space of A is a subspace of \mathbf{R}^{k} where $k=$ \qquad .
(c) Find a nonzero vector in $\operatorname{Col} A$. (There are infinitely many possibilities.)

$$
-\left[\begin{array}{l}
1 \\
2 \\
3 \\
0
\end{array}\right]+-\left[\begin{array}{l}
2 \\
4 \\
6 \\
0
\end{array}\right]+-\left[\begin{array}{r}
3 \\
7 \\
10 \\
1
\end{array}\right]=[
$$

(d) Find a nonzero vector in $\operatorname{Nul} A$. Solve $A \mathbf{x}=\mathbf{0}$ and pick one solution.

$$
\left[\begin{array}{ccrr}
1 & 2 & 3 & 0 \\
2 & 4 & 7 & 0 \\
3 & 6 & 10 & 0 \\
0 & 0 & 1 & 0
\end{array}\right] \text { row reduces to }\left[\begin{array}{llll}
1 & 2 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Let $x_{2}=$ \qquad and then

$$
\mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=[
$$

Contrast Between Nul A and Col A where A is $m \times n$.
$\operatorname{Col} A$ is a subspace of \qquad
Nul A is a subspace of \qquad
In the example above: How would you check whether $u=[1,3,-1]$ is in Nul A ?

How would you check whether $v=[1,2,2,1]$ in $\operatorname{Col} A$?

