THEOREM 0.0.1 (The Onto Dictionary). Let A be an $m \times n$ matrix and let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ with standard matrix A. Then the following are equivalent.
(a) A has m pivots positions
(b) A has pivot in every row
(c) For any $\mathbf{b} \in \mathbb{R}^{m}$, the system $A \mathbf{x}=\mathbf{b}$ is consistent
(d) Any $\mathbf{b} \in \mathbb{R}^{m}$ is a linear combination of the columns of A
(e) The columns of A span \mathbb{R}^{m}
(f) $\operatorname{Col} A=\mathbb{R}^{m}$
(g) $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is onto

THEOREM 0.0.2 (The One-to-One Dictionary). Let A be an $m \times n$ matrix and let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ with standard matrix A. Then the following are equivalent.
(a) A has n pivots positions
(b) A has pivot in every column (no free variables)
(c) $A \mathbf{x}=\mathbf{0}$ has only the trivial solution $\mathbf{x}=\mathbf{0}$
(d) $\operatorname{Nul} A=\{0\}$
(e) The columns of A are independent
(f) $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is one-to-one

THEOREM 0.0.3 (The Connections Theorem). Let A be an $n \times n$ matrix and let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ with standard matrix A. Then the following are equivalent.
(a) A is non-singular
(b) $A \sim I_{n}$
(c) A has n pivots positions
(d) A has pivot in every row
(e) For any $\mathbf{b} \in \mathbb{R}^{n}$, the system $A \mathbf{x}=\mathbf{b}$ is consistent
(f) Any $\mathbf{b} \in \mathbb{R}^{n}$ is a linear combination of the columns of A
(g) The columns of A span \mathbb{R}^{n}
(h) $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is onto
(i) A has pivot in every column (no free variables)
(j) $A \mathbf{x}=\mathbf{0}$ has only the trivial solution $\mathbf{x}=\mathbf{0}$
(k) The columns of A are independent
(l) $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is one-to-one
(m) There is an $n \times n$ matrix C such that $C A=I_{n}$
(n) There is an $n \times n$ matrix D such that $A D=I_{n}$
(o) A^{T} is invertible
(p) For any $\mathbf{b} \in \mathbb{R}^{n}$, the system $A \mathbf{x}=\mathbf{b}$ has a unique solution
(q) $\operatorname{det} A \neq 0$
(r)
(s)

Reading and Practice

1. Practice: Section 4.2. Page 205-207: \#1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25. These problems are great and a bit harder: Page 235 \#31, 33, and 35 (Challenge! XC).
2. Coming up next: Read Section 4.3 on Bases.

Hand In Monday

o. Remember the WeBWork problem set due Tuesday

1. Let $\mathbb{U}=\left\{\left[\begin{array}{c}a+2 \\ 2 a \\ b-a\end{array}\right]: a, b \in \mathbb{R}\right\}$. Determine whether \mathbb{U} is a subspace of \mathbb{R}^{3}. Be sure to justify your answer.
2. Assume A is $n \times n$. Prove: If $\operatorname{Nul} A=\{\mathbf{0}\}$, then $\operatorname{det} A^{T} \neq 0$.
3. Background: Let \mathcal{F} be the vector space of of all functions defined on $(-\infty, \infty)$. Let $\mathcal{C}=\{f \in \mathbb{F}: f$ is continuous $\}$. We can check that \mathcal{C} is a subspace of \mathcal{F}. The zero function $\mathbf{0}(t)=0$ is continuous so it is in \mathcal{C}. If f and g are both in \mathcal{C}, then both are continuous, so from Calculus I their sum $f+g$ is also continuous. So $f+g \in \mathcal{C}$. If c is a scalar and f is in \mathcal{C}, then f is continuous and from Calculus $\mathrm{I}, c f$ is also continuous. So $c f \in \mathcal{C}$. So \mathcal{C} is a subspace of \mathcal{F}. Now here's the problem:
(a) Let $T: \mathcal{C} \rightarrow \mathbb{R}$ by $T(f)=\int_{0}^{1} f(x) d x$. Show that T is a linear transformation. You will need to use your Calculus II knowledge.
(b) Bonus: Find an example of a function f in $\operatorname{ker} T$ such that f is not the zero function.
4. (a) Let $T: M_{2 \times 2} \rightarrow \mathbb{R}^{2}$ by $T(A)=T\left(\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\right)=\left[\begin{array}{l}a-c \\ b+d\end{array}\right]$. Is T a linear transformation? Prove your result.
(b) Describe the form of the matrices in $\operatorname{ker} T$ in terms of their component entries. In other words,

$$
\operatorname{ker} T=\left\{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]: \text { some condition(s) involving } a, b, c, d\right\} .
$$

Bonus if you can write them as the span of a set of vectors (matrices) in $M_{2 \times 2}$.
5. (a) Complete the following: If A is $n \times n$, then $\operatorname{det}(c A)=$
(b) Let $T: M_{2 \times 2} \rightarrow \mathbb{R}$ by $T(A)=\operatorname{det}(A)$. Determine whether T is a linear transformation. Hint: In light of part (a), which property of a linear transformation should you check first.
6. Bonus. Let H and K be subspaces of a vector space \mathbb{V}. The intersection of H and K, written as $H \cap K$, the set of vectors \mathbf{v} in \mathbb{V} that belong to both H and K. Prove that $H \cap K$ is a subspace of \mathbb{V}. [You will need to use the fact that H and K are both subspaces of \mathbb{V} to verify the three subspace conditions.]
7. EZ Small Extra Credit. This problem is fairly easy. But if you need practice with subspace proofs, here's one more. Since this is a straightforward bonus problem, it should be done carefully and perfectly. Let \mathbf{x} be some fixed (but unknown) vector in \mathbb{R}^{n}. Let

$$
H=\left\{A \in M_{m \times n}: A \mathbf{x}=\mathbf{0}\right\} .
$$

Is H a subspace of $M_{m \times n}$?

Coming Next Week

\qquad
8. (a) Let $T: M_{2 \times 2} \rightarrow M_{2 \times 2}$ by $T(A)=A+A^{T}$. Is T a linear transformation? Prove your result carefully.
(b) Describe the form of the matrices in $\operatorname{ker} T$ in terms of their component entries.

$$
\operatorname{ker} T=\left\{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]: \text { some condition(s) involving } a, b, c, d\right\} .
$$

