THEOREM 0.0.1 (The Onto Dictionary). Let *A* be an $m \times n$ matrix and let $T : \mathbb{R}^n \to \mathbb{R}^m$ with standard matrix *A*. Then the following are equivalent.

- (*a*) *A* has *m* pivots positions
- (b) A has pivot in every row
- (*c*) For any $\mathbf{b} \in \mathbb{R}^m$, the system $A\mathbf{x} = \mathbf{b}$ is consistent
- (*d*) Any $\mathbf{b} \in \mathbb{R}^m$ is a linear combination of the columns of *A*
- (*e*) The columns of *A* span \mathbb{R}^m
- (f) $\blacksquare \operatorname{Col} A = \mathbb{R}^m$
- (g) $T : \mathbb{R}^n \to \mathbb{R}^m$ is onto

THEOREM 0.0.2 (The One-to-One Dictionary). Let *A* be an $m \times n$ matrix and let $T : \mathbb{R}^n \to \mathbb{R}^m$ with standard matrix *A*. Then the following are equivalent.

- (a) A has n pivots positions
- (b) A has pivot in every column (no free variables)
- (c) $A\mathbf{x} = \mathbf{0}$ has only the trivial solution $\mathbf{x} = \mathbf{0}$
- (d) \bowtie Nul $A = \{\mathbf{0}\}$
- (e) The columns of A are independent
- (f) $T : \mathbb{R}^n \to \mathbb{R}^m$ is one-to-one

THEOREM 0.0.3 (The Connections Theorem). Let *A* be an $n \times n$ matrix and let $T : \mathbb{R}^n \to \mathbb{R}^n$ with standard matrix *A*. Then the following are equivalent.

- (a) A is non-singular
- (b) $A \sim I_n$
- (c) *A* has *n* pivots positions
- (d) A has pivot in every row
- (*e*) For any $\mathbf{b} \in \mathbb{R}^n$, the system $A\mathbf{x} = \mathbf{b}$ is consistent
- (*f*) Any $\mathbf{b} \in \mathbb{R}^n$ is a linear combination of the columns of *A*
- (g) The columns of A span \mathbb{R}^n
- (*h*) $T : \mathbb{R}^n \to \mathbb{R}^n$ is onto
- (*i*) *A* has pivot in every column (no free variables)
- (*j*) $A\mathbf{x} = \mathbf{0}$ has only the trivial solution $\mathbf{x} = \mathbf{0}$
- (*k*) The columns of *A* are independent
- (*l*) $T : \mathbb{R}^n \to \mathbb{R}^n$ is one-to-one
- (*m*) There is an $n \times n$ matrix *C* such that $CA = I_n$
- (*n*) There is an $n \times n$ matrix D such that $AD = I_n$
- (o) A^T is invertible
- (*p*) For any $\mathbf{b} \in \mathbb{R}^n$, the system $A\mathbf{x} = \mathbf{b}$ has a *unique* solution
- (q) det $A \neq 0$
- (*r*)
- (s)

Reading and Practice

- **1.** Practice: Section 4.2. Page 205–207: #1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25. These problems are great and a bit harder: Page 235 #31, 33, and 35 (Challenge! XC).
- 2. Coming up next: Read Section 4.3 on Bases.

Hand In Monday

o. Remember the WeBWorK problem set due Tuesday

1. Let
$$\mathbb{U} = \left\{ \begin{bmatrix} a+2\\ 2a\\ b-a \end{bmatrix} : a, b \in \mathbb{R} \right\}$$
. Determine whether \mathbb{U} is a subspace of \mathbb{R}^3 . Be sure to justify your answer.

- **2.** Assume *A* is $n \times n$. Prove: If Nul $A = \{\mathbf{0}\}$, then det $A^T \neq 0$.
- **3.** Background: Let \mathcal{F} be the vector space of all functions defined on $(-\infty, \infty)$. Let $\mathcal{C} = \{f \in \mathbb{F} : f \text{ is continuous}\}$. We can check that \mathcal{C} is a subspace of \mathcal{F} . The zero function $\mathbf{0}(t) = 0$ is continuous so it is in \mathcal{C} . If f and g are both in \mathcal{C} , then both are continuous, so from Calculus I their sum f + g is also continuous. So $f + g \in \mathcal{C}$. If c is a scalar and f is in \mathcal{C} , then f is continuous and from Calculus I, cf is also continuous. So $cf \in \mathcal{C}$. So \mathcal{C} is a subspace of \mathcal{F} . Now here's the problem:
 - (*a*) Let $T : \mathcal{C} \to \mathbb{R}$ by $T(f) = \int_0^1 f(x) dx$. Show that *T* is a linear transformation. You will need to use your Calculus II knowledge.
 - (*b*) Bonus: Find an example of a function f in ker T such that f is not the zero function.

4. (*a*) Let
$$T : M_{2 \times 2} \to \mathbb{R}^2$$
 by $T(A) = T\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = \begin{bmatrix} a-c \\ b+d \end{bmatrix}$. Is T a linear transformation? Prove your result.

(*b*) Describe the form of the matrices in ker *T* in terms of their component entries. In other words,

$$\ker T = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : \text{ some condition(s) involving } a, b, c, d \right\}.$$

Bonus if you can write them as the span of a set of vectors (matrices) in $M_{2\times 2}$.

- **5.** (*a*) Complete the following: If *A* is $n \times n$, then det(*cA*) = _____
 - (*b*) Let $T : M_{2\times 2} \to \mathbb{R}$ by $T(A) = \det(A)$. Determine whether *T* is a linear transformation. Hint: In light of part (a), which property of a linear transformation should you check first.
- **6.** Bonus. Let *H* and *K* be subspaces of a vector space V. The intersection of *H* and *K*, written as *H* ∩ *K*, the set of vectors **v** in V that belong to both *H* and *K*. Prove that *H* ∩ *K* is a subspace of V. [You will need to use the fact that *H* and *K* are both subspaces of V to verify the three subspace conditions.]
- **7. EZ Small Extra Credit**. This problem is fairly easy. But if you need practice with subspace proofs, here's one more. Since this is a straightforward bonus problem, it should be done carefully and perfectly. Let \mathbf{x} be some fixed (but unknown) vector in \mathbb{R}^n . Let

$$H = \{A \in M_{m \times n} : A\mathbf{x} = \mathbf{0}\}.$$

Is *H* a subspace of $M_{m \times n}$?

_Coming Next Week _____

- **8.** (*a*) Let $T : M_{2 \times 2} \to M_{2 \times 2}$ by $T(A) = A + A^T$. Is *T* a linear transformation? Prove your result carefully.
 - (*b*) Describe the form of the matrices in ker *T* in terms of their component entries.

$$\ker T = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : \text{ some condition(s) involving } a, b, c, d \right\}.$$