Office Hour Help: M \& W 2:30-4:00, Tu 2:00-3:30, \& F 1:30-2:30 or by appointment. Website: http://math.hws.edu/~mitchell/Math204S16/index.php.

Reading and Practice

1. (a) Finish reading Section 4.3 .
(b) Key definitions so far in Chapter 4: Vector space, subspace, null space of matrix A, and column space of matrix A, linear transformation between two general vector spaces, kernel and range of a linear transformation. The key term in the next section is basis for a vector space. Study that definition on page 209.
(c) Key theorems so far in Chapter 4: (1) $\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ is a subspace of \mathbb{V}; (2) If A is $m \times n$, then $\operatorname{Nul} A$ is a subspace of \mathbb{R}^{n}. (3) If A is $m \times n$, then $\operatorname{Col} A$ is a subspace of \mathbb{R}^{m}. (4) The kernel and range of a linear transformation $T: V \rightarrow W$ are subspaces of V and W, respectively.

In Class Example

Continuation from Friday: $\mathbb{P}_{2}=\left\{\mathbf{p}(t)=a+b t+c t^{2}: a, b, c \in \mathbb{R}\right\}$ is just the set of polynomials of degree 2 or less. Define $T: \mathbb{P}_{2} \rightarrow \mathbb{R}^{2}$ by $T(\mathbf{p})=\left[\begin{array}{c}\mathbf{p}(0) \\ \mathbf{p}(-1)\end{array}\right]$.
(a) Find three vectors (polynomials) that span \mathbb{P}_{2}.
(b) If $\mathbf{q}(t)=2+3 t+6 t^{2}$, what is $T(\mathbf{q})$?
(c) If $\mathbf{q}(t)=a+b t+c t^{2}$, what is $T(\mathbf{q})$?
(d) Show that T is a linear transformation.
(e) Determine ker T. Can you find a spanning set for $\operatorname{ker} T$.
(f) What is the Range of T ? Is T onto?

Hand in Friday

1. Let $\mathbb{W}=\left\{\left[\begin{array}{c}a+2 b \\ a-b+2 c \\ b+c \\ c-a\end{array}\right]: a, b, c \in \mathbb{R}\right\}$. Determine whether \mathbb{W} is a subspace of \mathbb{R}^{4}. Show some work. Which method is easy?
2. (a) Let $T: M_{2 \times 2} \rightarrow M_{2 \times 2}$ by $T(A)=A+A^{T}$. Is T a linear transformation?
(b) Find a description in terms of the components for the matrices are in $\operatorname{ker} T$. That is determine

$$
\operatorname{ker} T=\left\{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]: \text { some condition on } a, b, c, d\right\}
$$

Bonus if you can write ker T as the span of a set of vectors (matrices) in $M_{2 \times 2}$. (See the hint for Problem 8.)
3. (a) Page 206 \#6.
(b) Find a basis for Nul A. Read page 211.
4. Page 206 \#26 (a to e). Each question is answered explicitly in the text. Quote the appropriate sentence in the text and give its page number. One of these is a bit sneaky.
5. Define $T: \mathbb{P}_{2} \rightarrow \mathbb{R}^{2}$ by $T(\mathbf{p})=\left[\begin{array}{l}\mathbf{p}(0) \\ \mathbf{p}(2)\end{array}\right]$. (You may assume that T is a linear transformation.)
(a) If $\mathbf{p}(t)=2+3 t+6 t^{2}$, what is $T(\mathbf{p})$?
(b) If $\mathbf{q}(t)=a+b t+c t^{2}$, what is $T(\mathbf{q})$?
(c) Find a polynomial in \mathbb{P}_{2} that spans $\operatorname{ker} T$. Show your work.
6. This is abstract but easy. Page 207 \#30. Hint: Remember

$$
\text { Range } T=\{\mathbf{u} \in \mathbb{W}: \mathbf{u}=T(\mathbf{v}) \text { for some } \mathbf{v} \in \mathbb{V}\}
$$

So let's verify the three subspace properties:
(a) Why do we know that $\mathbf{0}_{W}$ is in Range T ? (What vector \mathbf{v} in \mathbb{V} do we know for a FACT must get mapped to $\mathbf{0}_{W}$ by T ?)
(b) Closure under addition: Let $\mathbf{w}, \mathbf{z} \in$ Range T. Show $\mathbf{w}+\mathbf{z} \in$ Range T. (If $\mathbf{w}, \mathbf{z} \in$ Range T, what does this mean? Use the definition above. So what element in \mathbb{V} gets mapped to $\mathbf{w}+\mathbf{z}$ by T ?)
(c) Closure under scalar multiplication. Let $\mathbf{w} \in$ Range T. What element in \mathbb{V} gets mapped to $c \mathbf{w}$?
7. These are straightforward to check your understanding of bases for $\operatorname{Nul} A$ and $\mathrm{Col} A$ and related spaces. Page 213-214 \#4, 6, 8, 10, 14 (all the hard work is done), and 16 (Hint: Convert to finding a basis for $\mathrm{Col} A$.)
8. Find a basis for the subspace of $M_{2 \times 2}$ spanned by the matrices

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{cc}
-2 & 0 \\
0 & 2
\end{array}\right],\left[\begin{array}{ll}
3 & -1 \\
1 & -1
\end{array}\right],\left[\begin{array}{cc}
5 & -3 \\
3 & -4
\end{array}\right],\left[\begin{array}{cc}
2 & -1 \\
1 & 0
\end{array}\right]
$$

Gigantic Hint: Since we add and scalar multiply matrices just like we do with vectors in \mathbb{R}^{n}, we can think of matrices in $M_{2 \times 2}$ as vectors in \mathbb{R}^{4} by listing all of the matrix entries vertically in a column. Now you can solve the problem in \mathbb{R}^{4} and convert the answer back to matrices.
9. Extra Credit: Let $T: \mathbb{R} \rightarrow \mathbb{R}^{+}$by $T(x)=e^{x}$. Show that T is a linear transformation. Important: Remember \mathbb{R}^{+}is the set of positive reals where $x \oplus y=x y$ and $c \odot x=x^{c}$.
(a) What is ker T ?
(b) What is Range T ?
10. Small XC, if you need practice with linear transformations: Let \mathbb{U}, \mathbb{V}, and \mathbb{W} be vector spaces. Assume that $T: \mathbb{U} \rightarrow \mathbb{V}$ and $S: \mathbb{V} \rightarrow \mathbb{W}$ are both linear transformations. Prove that the composition $G: \mathbb{U} \rightarrow \mathbb{W}$ by $G(\mathbf{u})=S(T(\mathbf{u}))$ is a linear transformation.

