Office Hour Help: M \& W 2:30-4:00, Tu 2:00-3:30, \& F 1:30-2:30 or by appointment. Website: http://math.hws.edu/~mitchell/Math204S16/index.php.

Reading and Practice

1. (a) Review Section 4.3 and begin Section 4.4. This is more difficult material.
(b) Recent key definitions: Linear transformation between two general vector spaces, kernel and range of a linear transformation, basis for a vector space. Study that definition on page 209, but here's my variation:

DEFINITION 4.3.100. Let \mathbb{V} be a vector space. An indexed set of vectors $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{p}\right\}$ is a basis for \mathbb{V} if

1. \mathcal{B} is linearly independent
2. \mathcal{B} spans \mathbb{V}, i.e., $\mathbb{V}=\operatorname{Span}\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{p}\right\}$.
(c) You should be to provide the proofs of the following facts that we did in class the last few days. You can find the outlines of two of them on the back of this sheet.

THEOREM 4-3.101 (Three Kernel Facts). Let $T: V \rightarrow W$ be a linear transformation between vector spaces. (1) $T\left(\mathbf{0}_{V}\right)=\mathbf{0}_{W}$. That is, $\mathbf{0}_{V} \in \operatorname{ker} T$.
(2) $\operatorname{ker} T$ is a subspace of V. (Corresponds to $\mathrm{Nul} A$ for a matrix transformation.)
(3) T is one-to-one if and only if $\operatorname{ker} T=\left\{\mathbf{0}_{V}\right\}$.
2. Practice: Page $213 \mathrm{ff} \#_{1}, 3,5,7,9,11,13,15,19,21$. Excellent problems \#23 and 29.

Work to Submit

1. Assignment 15 on Monday's Handout is Due Friday
2. Work on WeBWork LHWio. Due Sunday at Midnight. (4 Problems)
3. Work on WeBWork LHWir. Due Tuesday at Midnight. (io Problems)

In Class Example

1. (a) Find a basis for the subspace of $\mathbb{R}^{4}: \operatorname{Span}\left\{\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 0\end{array}\right]\left[\begin{array}{l}2 \\ 1 \\ 1 \\ 1\end{array}\right]\left[\begin{array}{l}2 \\ 2 \\ 2 \\ 0\end{array}\right]\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 2\end{array}\right]\right\}$
(b) Find a basis for the subspace of $M_{2 \times 2}: \operatorname{Span}\left\{\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right]\left[\begin{array}{ll}2 & 2 \\ 2 & 0\end{array}\right]\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]\right\}$
(c) Find a basis for the subspace of $\mathbb{P}_{3}: \operatorname{Span}\left\{1+t+t^{2}, 2+t+t^{2}+t^{3}, 2+2 t+2 t^{2}, 1+t+t^{2}+t^{3}, 1+2 t^{3}\right\}$
(d) Can you generalize what is common to all these examples? Think about this as you read Section 4.4.

Fact 1: Let $T: V \rightarrow W$ be a linear transformation between vector spaces. Then $T\left(\mathbf{0}_{V}\right)=\mathbf{0}_{W}$. That is, $\mathbf{0}_{V} \in \operatorname{ker} T$.

Proof: Since $0 \cdot \mathbf{0}_{V}=\mathbf{0}_{V}$,

$$
T\left(\mathbf{0}_{V}\right)=T\left(0 \cdot \mathbf{0}_{V}\right)=
$$

\qquad $=$ \qquad

Fact 2: Let $T: V \rightarrow W$ be a linear transformation between vector spaces. Then T is one-to-one if and only if $\operatorname{ker} T=\left\{\mathbf{0}_{V}\right\}$.

Proof: Part 1: Suppose that T is one-to-one. By definition of one-to-one, there is
\qquad one vector $\mathbf{v} \in V$ so that $T(\mathbf{v})=\mathbf{0}_{W}$. But Fact 1 says:
\qquad $=0_{W}$. So \qquad is the only vector in V mapped to $\mathbf{0}_{W}$. By
definition of kernel, that means $\operatorname{ker} T=$ \qquad .

Part 2: Suppose that $\operatorname{ker} T=\left\{\mathbf{0}_{V}\right\}$. Show that T is one-to-one. That means: Suppose that vectors $\mathbf{u}, \mathbf{v} \in V$ so that $T(\mathbf{u})=T(\mathbf{v})$. Show $\mathbf{u}=\mathbf{v}$. But $T(\mathbf{u})=T(\mathbf{v})$ so

$$
T(\mathbf{u}-\mathbf{v})=
$$

Therefore,

$$
T(\mathbf{u}-\mathbf{v})=
$$

\qquad $=$ \qquad
So

$$
\mathbf{u}-\mathbf{v} \in \quad=\left\{\mathbf{0}_{V}\right\}
$$

So $\mathbf{u}-\mathbf{v}=$ \qquad and, therefore, $\mathbf{u}=\mathbf{v}$. By definition, T is one-to-one.

