Math 204: Day 32

Review Section 4.3 and read Section 4.4. Concentrate on 216-217 and middle of 219 through Example 6.

Hand In Wednesday

1. Page 214-215 \#20, 22 (True-False, give a page reference to the text for each), 24 and 30 .
2. Harder: Page $215 \# 32$. This would make a good test problem and it is an important result. Use Part 3 of the Three Kernel Facts Theorem about ker T that we proved in class.
3. a) Page $215 \# 34$. Hint: This is like $\# 20$ above.
b) In \mathbb{P}_{3}, let $\mathbf{p}_{1}=1+0 t+0 t^{2}+t^{3}, \mathbf{p}_{2}=-2+t-t^{2}-t^{3}, \mathbf{p}_{3}=6-t+2 t^{2}+5 t^{3}, \mathbf{p}_{4}=5-3 t+3 t^{2}+2 t^{3}$, and $\mathbf{p}_{5}=0+3 t-t^{2}+3 t^{3}$. Find a basis for the space spanned by the given vectors. (Hint: Convert to finding a basis for $\operatorname{Col} A$. Be sure to convert your answer back to polynomials.)
c) (Harder Think about the Spanning Set Theorem 5): In the vector space of all continuous functions on $(-\infty, \infty)$, find a basis for the subspace \mathbb{H} spanned by $\left\{\sin ^{2} t, \cos ^{2} t, 1, \cos (2 t)\right\}$. You will need trig identities from a calculus book or on line.
4. Find a basis for $\operatorname{Nul} A$ and $\operatorname{Col} A$, where

$$
A=\left[\mathbf{a}_{1} \ldots \mathbf{a}_{5}\right]=\left[\begin{array}{ccccc}
1 & 2 & 1 & 1 & 1 \\
3 & 6 & 4 & 3 & 1 \\
4 & 8 & 5 & 5 & 5 \\
7 & 12 & 7 & 7 & 7
\end{array}\right]
$$

5. Page 222 \#4 (read the problem carefully) and 8 (different than \#4).
6. Most of these are straightforward. First read the bottom of page 218 and top of 219
a) Carefully reread the bottom of page 218 and top of 219 . Now try page $223 \# 10,12,14$, and 32 (remember to convert your final answer to a polynomial).
b) Carefully reread the bottom of page 218 and top of 219 . Now do page 223 problems $\# 21$ and 22. What is the matrix A in each case?
7. Maple Extra Credit. These both could be done by hand, but I want you do do them with Maple (or other software). In Maple, remember use fractions (not decimals).Page 224 \#37 and 38.
8. Extra Credit: From Section 4.5. Read ahead and do any of page $229 \# 6,12,14,22$, and 24 .

In Class

1. a) Find a basis for the subspace of $\mathbb{R}^{4}: \operatorname{Span}\left\{\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 0\end{array}\right]\left[\begin{array}{l}2 \\ 1 \\ 1 \\ 1\end{array}\right]\left[\begin{array}{l}2 \\ 2 \\ 2 \\ 0\end{array}\right]\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 2\end{array}\right]\right\}$
b) Find a basis for the subspace of $M_{2 \times 2}: \operatorname{Span}\left\{\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right]\left[\begin{array}{ll}2 & 2 \\ 2 & 0\end{array}\right]\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]\right\}$
c) Find a basis for the subspace of P_{3} : $\operatorname{Span}\left\{1+t+t^{2}, 2+t+t^{2}+t^{3}, 2+2 t+2 t^{2}, 1+t+t^{2}+t^{3}, 1+2 t^{3}\right\}$
d) Can you generalize what is common to all these examples? Think about this as you read Section 4.4.

Theorem 8

Let $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ be a basis for \mathbb{V}. Then the coordinate mapping $T: \mathbb{V} \rightarrow \mathbb{R}^{n}$ by $T(\mathbf{x})=[\mathbf{x}]_{\mathcal{B}}$ is a linear transformation that is one-to-one and onto, i.e., T is an isomorphism.

Proof (Linear): To show that T is linear check the two properties. Take any two vectors $\mathbf{u}, \mathbf{v} \in \mathbb{V}$. Since \mathcal{B} is a basis, we can write

$$
\mathbf{u}=
$$

\qquad ,

$$
\mathbf{v}=
$$

\qquad
So

$$
\mathbf{u}+\mathbf{v}=
$$

\qquad .
Then
$T(\mathbf{u}+\mathbf{v})=[\mathbf{u}+\mathbf{v}]_{\mathcal{B}}=[\square]=[]=\square$.
Next $r \mathbf{u}=$ \qquad
\qquad . So

$$
T(r \mathbf{u})=[r \mathbf{u}]_{\mathcal{B}}=[]=[]=\square=
$$

Proof (One-to-one): To show that T is one-to-one we can use Fact 2: T is one-to-one if and only if $\operatorname{ker} T=$ \qquad . So let $\mathbf{u} \in \operatorname{ker} T$. Show that $\mathbf{u}=$ \qquad . Since \mathcal{B} is a basis, we can write

$$
\mathbf{u}=
$$

\qquad .

Since $\mathbf{u} \in \operatorname{ker} T$,

$$
T(\mathbf{u})=
$$

$$
=
$$

$$
=
$$

So each $c_{i}=0$ and so $\mathbf{u}=0 \mathbf{b}_{1}+\cdots+0 \mathbf{b}_{n}$, so $\mathbf{u}=$ \qquad .

Proof (Onto): To show that T is onto, we take $\mathbf{x} \in \mathbb{R}^{n}$. Find $\mathbf{u} \in \mathbb{V}$ so that \qquad . This is the same as saying, find \mathbf{u} so that

$$
[\mathbf{u}]_{\mathcal{B}}=\mathbf{x}=[\quad] .
$$

Which u will work? \qquad . Check $T(\mathbf{u})=[\mathbf{u}]_{\mathcal{B}}=\quad=$

