Math 204: Day 34

1. Review Section 4.5 on dimension. Read Section 4.6 on Rank.
a) Test Monday. It will cover Section 3.2 (Properties of Determinants) and Sections 4.1-4.5.
b) Practice: Page $229 \# 3,5,9,11,13,15,21,23,25$. Find bases for $\mathrm{Col} A$ and $\mathrm{Nul} A$ in 13 and 15.
2. Key Definitions (some will be on the exam): Linear transformation between two general vector spaces, kernel and range of a linear transformation, one-to-one, onto, basis for a vector space, subspace, null space of matrix A, and column space of matrix A. New: \mathcal{B}-coordinates of \mathbf{x}, isomorphism, finitedimensional vector space, $\operatorname{dim} V$.

A few more practice problems for the exam

There were 8 problems on the last handout. These questions and answers are online. See website.
9. a) Determine whether $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by $T\left(\left(\left[\begin{array}{l}a \\ b\end{array}\right]\right)=\left[\begin{array}{c}a+b \\ b^{2}\end{array}\right]\right.$ is a linear transformation.
b) Is $T: \mathbb{P}_{2} \rightarrow \mathbb{R}^{2}$ by $T(\mathbf{p})=\left[\begin{array}{c}\mathbf{p}(2) \\ 2 \mathbf{p}(0)\end{array}\right]$ is a linear transformation.
c) If T is linear, find a basis for $\operatorname{ker} T$.
10. Is $\mathbb{W}=\left\{\left[\begin{array}{c}a \\ a^{2}\end{array}\right]: a \in \mathbb{R}\right\}$ a subspace of \mathbb{R}^{2} ?
11. Is $\mathbb{W}=\left\{\mathbf{p} \in \mathbb{P}_{5}: \int_{0}^{1} \mathbf{p}(t) d t=1\right\}$ a subspace of \mathbb{P}_{5} ?
12. Let $T: \mathbb{V} \rightarrow \mathbb{W}$ be a linear transformation. Prove that $\operatorname{ker} T$ is a subspace of \mathbb{V}. (We proved this in class, can you do the proof with looking it up?)
13. Page $196 \# 3$.
14. Return to page $223 \# 32$ (practice problem $\# 3$). If $\mathbf{p}(t)=3+t+5 t^{2}$ determine $[\mathbf{p}]_{B}$.
15. (Think!) Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation that is one-to-one. What is the dimension of the Range of T ? (Hint: Think about the standard matrix for this transformation.) What is the
16. (More thinking!) Suppose $\mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{p}_{3}, \mathbf{p}_{4}$ are polynomials so that $\operatorname{Span}\left\{\mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{p}_{3}, \mathbf{p}_{4}\right\}=\mathbb{H}$ is a twodimensional subspace in \mathbb{P}_{5}. Describe how to find a basis for \mathbb{H} by examining the four polynomials and doing almost no work.

Hand in Friday

Simple checks: Have you understood bases and dimension.

1. Page $229 \# 4,12,14$, and 8 (like a null space problem).

EXAMPLE: Find the dimension of the subspace $W=\left\{\left[\begin{array}{c}a+b+2 c \\ a+2 b+3 c+d \\ b+c+d \\ 3 a+3 c+d\end{array}\right]: a, b, c, d \in \mathbb{R}\right\}$
SOLUTION: $\left[\begin{array}{c}a+b+2 c \\ a+2 b+4 c+d \\ b+c+d \\ 3 a+3 c+d\end{array}\right]=a[]+b[]+c[]+d[]=\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}\right\}$

- \mathbf{v}_{1} and \mathbf{v}_{2} are linearly
- \mathbf{v}_{3} is a linear combination of \qquad . By the Spanning Set Theorem we may \qquad \mathbf{v}_{3}.
- Is \mathbf{v}_{4} a linear combination of \mathbf{v}_{1} and \mathbf{v}_{2} ?
- Conclusion: \qquad is a basis for W and $\operatorname{dim} W=$ \qquad .

EXAMPLE: Dimensions of subspaces of R^{3}

0-dimensional subspace contains only the zero vector $\left\{\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]\right\}$.
1-dimensional subspaces. Span $\{\mathbf{v}\}$ where $\mathbf{v} \neq \mathbf{0}$ is in \mathbf{R}^{3}.

These subspaces are \qquad through the origin.

2-dimensional subspaces. Span $\{\mathbf{u}, \mathbf{v}\}$ where \mathbf{u} and \mathbf{v} are in \mathbf{R}^{3} and are not multiples of each other.

These subspaces are \qquad through the origin.

3-dimensional subspaces. Span $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ where $\mathbf{u}, \mathbf{v}, \mathbf{w}$ are linearly independent vectors in \mathbf{R}^{3}. This subspace is \mathbf{R}^{3} itself because the columns of $A=[\mathbf{u} \mathbf{v} \mathbf{w}]$ span \mathbf{R}^{3} according to the IMT.

EXAMPLE: Determine the dimensions of $\operatorname{Nul} A$ and $\mathrm{Col} A$ if

$$
A \sim\left[\begin{array}{ccccc}
1 & -2 & 5 & 0 & 1 \\
0 & 0 & 3 & -3 & 0 \\
0 & 0 & 0 & 1 & -4 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

The Spanning Theorem says if $\mathbb{H}=\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$, then we can discard (one at a time) any vector that is a linear combination of the others and still span \mathbb{H}. Keep discarding until the remaining vectors are independent, thus producing a basis. The next theorem says we can go the 'other way', start with an independent set and expand to a basis.

Theorem 11

Let \mathbb{H} be a subspace of a finite-dimensional vector space $\mathbb{V}($ say $\operatorname{dim} \mathbb{V}=n)$. Any linearly independent $S=\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ in \mathbb{H} can be expanded to a basis for \mathbb{H}. Further, \mathbb{H} is finite-dimensional and

$$
\operatorname{dim} \mathbb{H} \leq \operatorname{dim} \mathbb{V}
$$

Proof: If we are lucky, Span $S=\mathbb{H}$. Then S is a \qquad for \mathbb{H} because S is already

Otherwise, if we are not lucky, S does not span \mathbb{H}, so there's at least one vector $\mathbf{u}_{k+1} \in$ \mathbb{H} so that \qquad . But then $S_{1}=\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}, \mathbf{u}_{k+1}\right\}$ is an set because no vector is a linear combination of the preceding vectors (Theorem 4.4).

If S_{1} does not span \mathbb{H}, expand again (and again) to get larger independent sets. Eventually the process must stop since no set of independent vectors in \mathbb{V} can have more than
\qquad vectors by Theorem 9. When the expansion of S stops say at S^{*}, all vectors in \mathbb{H} are in span of S^{*} and hence this expanded set is a \qquad for \mathbb{H}.

EXAMPLE: Let $\mathbb{H}=\operatorname{Span}\left\{\left[\begin{array}{l}5 \\ 0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}2 \\ 4 \\ 0 \\ 0\end{array}\right]\right\}$. Then \mathbb{H} is a subspace of \mathbb{R}^{4}. What vectors could we add to we expand that set $\left\{\left[\begin{array}{l}5 \\ 0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}2 \\ 4 \\ 0 \\ 0\end{array}\right]\right\}$ to a basis for \mathbb{R}^{4} ?

$$
\left\{\left[\begin{array}{l}
5 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
2 \\
4 \\
0 \\
0
\end{array}\right],[],[]\right\}
$$

Why do you know that your set is a basis for \mathbb{R}^{4} ?

EXAMPLE: Consider the set S of vectors five vectors in \mathbb{P}_{3}.
$S=\left\{3-3 t+6 t^{2}+3 t^{3}, 5-2 t+t^{2},-4+4 t-8 t^{2}-4 t^{3}, 4-t-t^{2}-t^{3}, 2+t-5 t^{2}-3 t^{3}\right\}$
Explain how you know that these vectors are dependent.

How would you determine the dimension of the subspace of \mathbb{P}_{3} of spanned by S ?

