Math 204: Day 34

- 1. Review Section 4.5 on dimension. Read Section 4.6 on Rank.
 - a) Test Monday. It will cover Section 3.2 (Properties of Determinants) and Sections 4.1-4.5.
 - b) Practice: Page 229 #3, 5, 9, 11, 13, 15, 21, 23, 25. Find bases for Col A and Nul A in 13 and 15.
- Key Definitions (some will be on the exam): Linear transformation between two general vector spaces, kernel and range of a linear transformation, one-to-one, onto, **basis** for a vector space, subspace, null space of matrix A, and column space of matrix A. New: B-coordinates of x, isomorphism, finite-dimensional vector space, dim V.

A few more practice problems for the exam

There were 8 problems on the last handout. These questions and answers are online. See website.

- **9.** a) Determine whether $T : \mathbb{R}^2 \to \mathbb{R}^2$ by $T(\left(\begin{bmatrix} a \\ b \end{bmatrix}\right) = \begin{bmatrix} a+b \\ b^2 \end{bmatrix}$ is a linear transformation.
 - **b)** Is $T : \mathbb{P}_2 \to \mathbb{R}^2$ by $T(\mathbf{p}) = \begin{bmatrix} \mathbf{p}(2) \\ 2\mathbf{p}(0) \end{bmatrix}$ is a linear transformation.
 - c) If T is linear, find a basis for ker T.
- **10.** Is $\mathbb{W} = \left\{ \begin{bmatrix} a \\ a^2 \end{bmatrix} : a \in \mathbb{R} \right\}$ a subspace of \mathbb{R}^2 ?
- 11. Is $\mathbb{W} = \{\mathbf{p} \in \mathbb{P}_5 : \int_0^1 \mathbf{p}(t) \, dt = 1\}$ a subspace of \mathbb{P}_5 ?
- 12. Let $T : \mathbb{V} \to \mathbb{W}$ be a linear transformation. Prove that ker T is a subspace of \mathbb{V} . (We proved this in class, can you do the proof with looking it up?)
- **13.** Page 196 #3.
- 14. Return to page 223 #32 (practice problem #3). If $\mathbf{p}(t) = 3 + t + 5t^2$ determine $[\mathbf{p}]_B$.
- **15.** (Think!) Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation that is one-to-one. What is the dimension of the Range of T? (Hint: Think about the standard matrix for this transformation.) What is the
- 16. (More thinking!) Suppose \mathbf{p}_1 , \mathbf{p}_2 , \mathbf{p}_3 , \mathbf{p}_4 are polynomials so that $\text{Span}\{\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3, \mathbf{p}_4\} = \mathbb{H}$ is a twodimensional subspace in \mathbb{P}_5 . Describe how to find a basis for \mathbb{H} by examining the four polynomials and doing almost no work.

Hand in Friday

Simple checks: Have you understood bases and dimension.

1. Page 229 #4, 12, 14, and 8 (like a null space problem).

- v₁ and v₂ are linearly _____
- \mathbf{v}_3 is a linear combination of _____. By the Spanning Set Theorem we may _____ \mathbf{v}_3 .
- Is \mathbf{v}_4 a linear combination of \mathbf{v}_1 and \mathbf{v}_2 ?
- Conclusion: _____ is a basis for W and $\dim W =$ ___.

EXAMPLE: Dimensions of subspaces of R³

1-dimensional subspaces. Span $\{v\}$ where $v \neq 0$ is in \mathbb{R}^3 .

These subspaces are ______ through the origin.

2-dimensional subspaces. Span $\{u, v\}$ where u and v are in \mathbb{R}^3 and are not multiples of each other.

These subspaces are ______ through the origin.

3-dimensional subspaces. Span $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ where $\mathbf{u}, \mathbf{v}, \mathbf{w}$ are linearly independent vectors in \mathbf{R}^3 . This subspace is \mathbf{R}^3 itself because the columns of $A = \begin{bmatrix} \mathbf{u} & \mathbf{v} & \mathbf{w} \end{bmatrix}$ span \mathbf{R}^3 according to the IMT.

EXAMPLE: Determine the dimensions of Nul A and Col A if

$$A \sim \begin{bmatrix} 1 & -2 & 5 & 0 & 1 \\ 0 & 0 & 3 & -3 & 0 \\ 0 & 0 & 0 & 1 & -4 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

The Spanning Theorem says if $\mathbb{H} = \text{Span} \{\mathbf{v}_1, \dots, \mathbf{v}_p\}$, then we can discard (one at a time) any vector that is a linear combination of the others and still span \mathbb{H} . Keep discarding until the remaining vectors are independent, thus producing a basis. The next theorem says we can go the 'other way', start with an **independent set and expand to a basis**.

Theorem 11

Let \mathbb{H} be a subspace of a finite-dimensional vector space \mathbb{V} (say dim $\mathbb{V} = n$). Any linearly independent $S = {\mathbf{u}_1, \ldots, \mathbf{u}_k}$ in \mathbb{H} can be expanded to a basis for \mathbb{H} . Further, \mathbb{H} is finite-dimensional and

 $\dim \mathbb{H} \leq \dim \mathbb{V}.$

Proof: If we are lucky, Span $S = \mathbb{H}$. Then S is a ______ for \mathbb{H} because S is already

Otherwise, if we are not lucky, S does not span \mathbb{H} , so there's at least one vector $\mathbf{u}_{k+1} \in \mathbb{H}$ so that ______. But then $S_1 = {\mathbf{u}_1, \dots, \mathbf{u}_k, \mathbf{u}_{k+1}}$ is an ______ set because no vector is a linear combination of the preceding vectors (Theorem 4.4).

If S_1 does not span \mathbb{H} , expand again (and again) to get larger independent sets. Eventually the process must stop since no set of independent vectors in \mathbb{V} can have more than ______ vectors by Theorem 9. When the expansion of S stops say at S^* , all vectors in \mathbb{H} are in span of S^* and hence this expanded set is a ______ for \mathbb{H} .

EXAMPLE: Let
$$\mathbb{H} = \operatorname{Span} \left\{ \begin{bmatrix} 5\\0\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 2\\4\\0\\0\\0 \end{bmatrix} \right\}$$
. Then \mathbb{H} is a subspace of \mathbb{R}^4 . What vectors could we add to we expand that set $\left\{ \begin{bmatrix} 5\\0\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 2\\4\\0\\0\\0 \end{bmatrix} \right\}$ to a basis for \mathbb{R}^4 ?
$$\left\{ \begin{bmatrix} 5\\0\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 2\\4\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 2\\4\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\0\\0\\0 \end{bmatrix} \right\}$$

Why do you know that your set is a basis for \mathbb{R}^4 ?

EXAMPLE: Consider the set S of vectors five vectors in \mathbb{P}_3 .

 $S = \{3 - 3t + 6t^2 + 3t^3, 5 - 2t + t^2, -4 + 4t - 8t^2 - 4t^3, 4 - t - t^2 - t^3, 2 + t - 5t^2 - 3t^3\}$

Explain how you know that these vectors are dependent.

How would you determine the dimension of the subspace of \mathbb{P}_3 of spanned by S?