Office Hour Help: M & W 2:30–4:00, Tu 2:00–3:30, & F 1:30–2:30 or by appointment. Website: http://math.hws.edu/~mitchell/Math204S16/index.php.

Practice and Reading

Try to do the proof on the LAST page. Volunteer to present in class next time.

- **1.** (*a*) Review Sections 5.1 and 5.2 in your text. We should finish most of Section 5.2 today. I expect to begin Section 5.3 on Monday, so read ahead. Skim that.
- **2.** (*a*) **Practice**. First try Page 273 #1, 3, 7, 9, 15. Now go back and try Page 271 #3, 7, 9, 13, 17. Now try Page 271 21, 23 (for 2 × 2 only). Now try Finally try #35. This shows the utility of a basis of eigenvectors.
 - (*b*) Key Terms: eigenvalue, eigenvector, algebraic multiplicity, characteristic equation (polynomial), geometric multiplicity, and similarity.

Hand in Wednesday

- Remember: WeBWorK set SHW13. Due Monday night.
- **1.** Find the characteristic polynomial and the real eigenvalues for the following four matrices. These show the four different possible results for 2×2 matrices. You may need to use the quadratic formula.

(<i>a</i>)	5	3	(h)	5	-3	(3)	-4	(d)	7	-2
	3	5	(b)	$\left\lfloor -4 \right\rfloor$	3	(c) $\begin{bmatrix} 3\\4 \end{bmatrix}$	8	(<i>u</i>)	2	3

2. Find bases for the eigenspaces in #1(a) and #1(d).

3. Find the eigenvalues and bases for the eigenspaces for $A = \begin{bmatrix} -1 & 0 & 1 \\ -3 & 4 & 1 \\ 0 & 0 & 2 \end{bmatrix}$.

ies for
$$\begin{bmatrix} 5 & 0 & 0 & 0 \\ 8 & -4 & 0 & 0 \\ 0 & 7 & 1 & 0 \\ 1 & -5 & 2 & 1 \end{bmatrix}$$

- **4.** List the eigenvalues and their multiplicities for
- 5. Exercise #18 page 280. (You are trying to find h to make E_4 two-dimensional.)
- 6. Prove the following (see hint in margin):

THEOREM 4.3.100. Assume λ is an eigenvalue of A with corresponding eigenvector **v**. Then λ is an eigenvalue of A^T .

7. Prove the following:

THEOREM 4.3.101. Assume *A* is invertible and λ is an eigenvalue of *A* with corresponding eigenvector **v**. Then λ^{-1} is an eigenvalue of A^{-1} corresponding to the same eigenvector **v**.

8. Prove the following:

THEOREM 4.3.102. Assume λ is an eigenvalue of A with corresponding eigenvector **v**. Then λ^2 is an eigenvalue of A^2 corresponding to the same eigenvector **v**.

BONUS: If you know induction, then prove: For any positive integer *n*, if λ is an eigenvalue of *A* with corresponding eigenvector **v**, then λ^n is an eigenvalue of A^n corresponding to the same eigenvector **v**.

• Use the Characteristic Equation and properties of transposes and determinants.

use: Start with $A\mathbf{v} = \lambda \mathbf{v}$. Use A^{-1} . Make sure to explain why λ^{-1} exists.

• Consider $A^2 \mathbf{v} = A(A\mathbf{v})$.

- 2
- 9. Page 272 #22 (give a reference), 36.
- 10. (a) Use Maple to find the eigenvalues and eigenvectors for the TRANSPOSE of the matrix page 273, #39. (See the Maple sample code below.) According to problem 2, you should get the same eigenvalues as for *A*. Did you (look in the back of the text)? Are the eigenvectors the same?

with(*LinearAlgebra*): Find the eigenvalues and bases for the corresponding eigenspaces for

 $A := \begin{bmatrix} 9 & -56 & -14 & 42 \\ -4 & 32 & -14 & -33 \\ -2 & -28 & 6 & 21 \\ -4 & 44 & -14 & -45 \end{bmatrix}:$

Get the characteristic polynomial using the determinant:

$$Determinant(A - \text{lambda IdentityMatrix}(4))$$

$$\lambda^{4} - 2\lambda^{3} - 311\lambda^{2} + 312\lambda + 24336$$
 (1)

Now cut and paste the equation into the solve command:

solve
$$(24336 + \lambda^4 - 2\lambda^3 - 311\lambda^2 + 312\lambda = 0, \text{ lambda})$$

-12, -12, 13, 13 (2)

We could have done this a bit more directly using the CharacteristicPolynomial command *CharacteristicPolynomial(A, lambda)*

$$\lambda^{4} - 2\lambda^{3} - 311\lambda^{2} + 312\lambda + 24336$$
 (3)

In fact we don't even need to compute the characteristic polynomial separately, you can embed it in the solve command

solve(CharacteristicPolynomial(A, lambda) = 0, lambda)-12, -12, 13, 13

To find the eigenspaces use the usual commands. For -12: ReducedRowEchelonForm(A - (-12)IdentityMatrix(4))

from which you can get the basis. (What would it be?) Even easier, use NullSpace(A - (-12)IdentityMatrix(4))

$$\begin{bmatrix} 0\\ \frac{3}{4}\\ 0\\ 1 \end{bmatrix}, \begin{bmatrix} 2\\ \frac{1}{2}\\ 1\\ 0 \end{bmatrix}$$
(6)

(4)

Class Work

THEOREM 4.3.103 (Eigenvectors corresponding to Distinct Eigenvalues are Independent). If $\mathbf{v}_1, \ldots, \mathbf{v}_r$ are distinct eigenvectors that correspond to distinct eigenvalues $\lambda_1, \ldots, \lambda_r$ of an $n \times n$ matrix A, then $\{\mathbf{v}_1, \ldots, \mathbf{v}_r\}$ is linearly independent.

Proof. (By Contraposition.) Assume $\{\mathbf{v}_1, \ldots, \mathbf{v}_r\}$ is **dependent**. (Show $\lambda_1, \ldots, \lambda_r$ are not distinct...so at least two of them are equal).

By the definition of dependent, by Theorem 4.4, one of the vectors—say \mathbf{v}_{p+1} —is a non-trivial combination of the earlier vectors, $\mathbf{v}_1, \ldots, \mathbf{v}_p$ which are independent. So

	$__=\mathbf{v}_{p+1}$	(4.1)
where some $c_i \neq ___$		
Multiply (??) by A:		
	$\underline{\qquad} = A\mathbf{v}_{p+1}$	(4.2)
Since each \mathbf{v}_k is an eigenvector corresponding to λ_k , we can rev	write (??) as	
	$=\lambda_{p+1}\mathbf{v}_{p+1}$	(4.3)
Also multiply (??) by λ_{p+1} :		
	$=\lambda_{p+1}\mathbf{v}_{p+1}$	(4.4)
Subtract: (??)–(??):		
	= 0	(4.5)
But $\mathbf{v}_1, \ldots, \mathbf{v}_p$ are independent, so all the coefficients in (??) equ	ual 0 so	

 $c_1(\lambda_1 - \lambda_{p+1}) = 0, c_2(\lambda_2 - \lambda_{p+1}) = 0, \dots, c_p(\lambda_p - \lambda_{p+1}) = 0$

Since the combination in (??) at the outset was non-trivial, some $c_i \neq _$. So $c_i(\lambda_i - \lambda_{p+1}) = 0$ means

 $\lambda_i - \lambda_{p+1} =$ _____ which means _____

.

So the eigenvalues are _____

3

Class Work—The proof of The Diagonalization Theorem

Definition. An $n \times n$ matrix A is **diagonalizable** if A is similar to a diagonal matrix. (That is, $A = PDP^{-1}$, where D is diagonal. Note: This also means $P^{-1}AP = D$.)

The Diagonalization Theorem. An $n \times n$ matrix A is diagonalizable if and only if A has n independent eigenvectors { $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ }. In fact, if $P = [\mathbf{v}_1 \mathbf{v}_2 \dots \mathbf{v}_n]$ and

$$D = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix}$$

is the diagonal matrix whose diagonal entries are the eigenvalues corresponding to $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$, then $A = PDP^{-1}$.

Proof. \Rightarrow . Given *A* is diagonalizable. So A =_____ where _____ is invertible and ______ is _____. So AP =______. Let $P = [\mathbf{v}_1 \, \mathbf{v}_2 \, \dots \, \mathbf{v}_n]$. Then

$$AP = A[\mathbf{v}_1 \, \mathbf{v}_2 \, \dots \, \mathbf{v}_n] = [$$

while, since *D* is diagonal with diagonal entries $\lambda_1, \ldots, \lambda_n$, then

$$PD = \begin{bmatrix} \mathbf{v}_1 \, \mathbf{v}_2 \, \dots \, \mathbf{v}_n \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{bmatrix} = \begin{bmatrix} & & \\ \end{bmatrix}$$

But AP = PD so $A\mathbf{v}_1 = _$, so $_$ is an $_$ corresponding to $_$. Similarly for $\mathbf{v}_2 \dots \mathbf{v}_n$. Since $P = [\mathbf{v}_1 \mathbf{v}_2 \dots \mathbf{v}_n]$ is invertible, $\mathbf{v}_1 \mathbf{v}_2 \dots \mathbf{v}_n$ are $_$ by the IMT.

 \Leftarrow Given *A* has *n* independent eigenvectors {**v**₁, **v**₂,..., **v**_n} corresponding to $\lambda_1, ..., \lambda_n$ (*λ*'s are not necessarily, distinct by the way). Let *P* = [**v**₁ **v**₂ ... **v**_n]. *P* is ______(IMT). Let

$$D = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix}$$

Then

$$AP = [] = [\lambda_1 \mathbf{v}_1 \dots \lambda_n \mathbf{v}_n] = PD$$

because $\{v_1, v_2, ..., v_n\}$ are _____. So

$$AP = PD \Rightarrow A = _$$

So A is