Office Hour Help: M & W 2:30–4:00, Tu 2:00–3:30, & F 1:30–2:30 or by appointment. Website: http://math.hws.edu/~mitchell/Math204S16/index.php.

Practice and Reading

- **1.** (*a*) Review Sections 5.2 and 5.3. We will discuss stage-matrix models in the final classes.
 - (*b*) Read the Case Study on Owl populations (handout). We will conclude the term with a study of **stage-matrix** models. Skim section 5.6 pages 301–middle of 303, 307(Owls)–309 in your text.

2. (*a*) **Practice**. New: Page 286ff: #1(see Example 2), 3, 5, 7, 9, 11, 17, 21.

- (*b*) Previously suggested: **Practice**. First try Page 273 #1, 3, 7, 9, 15. Now go back and try Page 271 #3, 7, 9, 13, 17. Now try Page 271 21, 23 (for 2 × 2 only). Now try Finally try #35. This shows the utility of a basis of eigenvectors.
- (c) Key Terms: eigenvalue, eigenvector, algebraic multiplicity, characteristic equation (polynomial), geometric multiplicity, similarity, diagonalizable, eigenvector basis for \mathbb{R}^n .

On the next assignment

- **1.** Page 286–287: Just find *P* and *D* if possible: #8, 10, and 12. Note for #12 you are given the eigenvalues.
- Here's an easy problem: Without doing any calculation give an eigenvalue of
 [1 2 3]
 - $A = \begin{bmatrix} 1 & 2 & 0 \\ 1 & 2 & 3 \\ 1 & 2 & 3 \end{bmatrix}$. Hint: Connections Extension to Eigenvalues.
- **3.** Suppose that an $n \times n$ matrix A has eigenvector \mathbf{v}_1 corresponding to eigenvalue λ_1 . On the last assignment, you proved that $A^2\mathbf{v}_1 = \lambda_1^2\mathbf{v}$.
 - (*a*) Assume that for some positive integer *k*, you know $A^k \mathbf{v}_1 = \lambda_1^k \mathbf{v}_1$. Prove that $A^{k+1}\mathbf{v}_1 = \lambda_1^{k+1}\mathbf{v}_1$. Hint: Think of A^{k+1} as AA^k .

COMMENT: Here's what the previous part means. Since we know that A has eigenvector \mathbf{v}_1 corresponding to eigenvalue λ_1 , we know that $A^1\mathbf{v}_1 = \lambda_1^1\mathbf{v}_1$. By part (a) with k = 1, we now know that $A^{k+1}\mathbf{v}_1 = A^{1+1}\mathbf{v}_1 = A^2\mathbf{v}_1 = \lambda_1^2\mathbf{v}_1$. By part (a) again with k = 2, we now know that $A^{k+1}\mathbf{v}_1 = A^{2+1}\mathbf{v}_1 = A^3\mathbf{v}_1 = \lambda_1^3\mathbf{v}_1$. By part (a) with k = 3, we now know that $A^{k+1}\mathbf{v}_1 = A^{3+1}\mathbf{v}_1 = A^4\mathbf{v}_1 = \lambda_1^4\mathbf{v}_1$, and so on. So we have shown

THEOREM 4.3.2. Suppose that a square matrix *A* has eigenvector \mathbf{v}_1 corresponding to eigenvalue λ_1 . Then for any positive integer *n*, $A^n \mathbf{v}_1 = \lambda_1^n \mathbf{v}_1$

- (*b*) Suppose that an $n \times n$ matrix A has eigenvector \mathbf{v}_1 corresponding to λ_1 . Let c be any scalar. Using the theorem above and basic matrix algebra, prove: For any positive integer n, $A^n(c\mathbf{v}_1) = c\lambda_1^n \mathbf{v}$. (This is a quick proof.)
- (c) Ok, now go a step further. Suppose that an $n \times n$ matrix A has eigenvectors $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_p$ with corresponding eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_p$. If the vector \mathbf{x} can be expressed as $\mathbf{x} = c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \cdots + c_p\mathbf{v}_p$, then use your result above and matrix algebra to show

$$A^{n}\mathbf{x} = c_{1}\lambda_{1}^{n}\mathbf{v}_{1} + c_{2}\lambda_{2}^{n}\mathbf{v}_{2} + \dots + c_{p}\lambda_{p}^{n}\mathbf{v}_{p}$$

Class Work—The proof of The Diagonalization Theorem

Definition. An $n \times n$ matrix A is **diagonalizable** if A is similar to a diagonal matrix. (That is, $A = PDP^{-1}$, where D is diagonal. Note: This also means $P^{-1}AP = D$.)

The Diagonalization Theorem. An $n \times n$ matrix A is diagonalizable if and only if A has *n* independent eigenvectors { $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ }. In fact, if $P = [\mathbf{v}_1 \mathbf{v}_2 \dots \mathbf{v}_n]$ and

	λ_1	0	• • •	0]
D =	0	λ_2	 	0
	:	÷	·	:
	0	0	• • •	λ_n

is the diagonal matrix whose diagonal entries are the eigenvalues corresponding to $\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n\}$, then $A = PDP^{-1}$.

Proof. \Rightarrow . Given *A* is diagonalizable. So *A* = _____ where _____ is invertible and ______ is ______. So *AP* = _____. Let $P = [\mathbf{v}_1 \, \mathbf{v}_2 \, \dots \, \mathbf{v}_n].$ Then A [л г]

$$AP = A[\mathbf{v}_1 \, \mathbf{v}_2 \, \dots \, \mathbf{v}_n] = [$$

while, since *D* is diagonal with diagonal entries $\lambda_1, \ldots, \lambda_n$, then

$$PD = \begin{bmatrix} \mathbf{v}_1 \, \mathbf{v}_2 \, \dots \, \mathbf{v}_n \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{bmatrix} = \begin{bmatrix} \\ \end{bmatrix}$$

But AP = PD so $A\mathbf{v}_1 =$ _____, so _____ is an _____ corresponding to _____. Similarly for $\mathbf{v}_2 \dots \mathbf{v}_n$. Since $P = [\mathbf{v}_1 \mathbf{v}_2 \dots \mathbf{v}_n]$ is invertby the Connections Theorem ible, $\mathbf{v}_1 \, \mathbf{v}_2 \, \dots \, \mathbf{v}_n$ are _____ (IMT).

 \leftarrow Given *A* has *n* independent eigenvectors { $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ } corresponding to $\lambda_1, \dots, \lambda_n$ (λ 's are not necessarily, distinct by the way). Let $P = [\mathbf{v}_1 \mathbf{v}_2 \dots \mathbf{v}_n]$. *P* is _____ by the Connections Theorem (IMT). Let

$$D = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix}$$

Then

AP = [] = $[\lambda_1 \mathbf{v}_1 \dots \lambda_n \mathbf{v}_n] = PD$

because $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ are _____. So

 $AP = PD \Rightarrow A =$ _____

So *A* is _____

with (LinearAlgebra):

Be careful when determining whether a stochastic matrix P is **regular**. Looking at P^2 may not be sufficient. higher powers of P may be required before all entries are positive. Here's a 4 x 4 matrix whose first three powers contain 0s, but whose fourth power has all positive entries. Suppose this were a mouse maze, could you interpret the transition matrix?

$$P := \begin{bmatrix} \frac{1}{2} & 0 & \frac{1}{2} & 0 \\ \frac{1}{2} & 0 & 0 & \frac{1}{4} \\ 0 & 0 & \frac{1}{4} & \frac{1}{4} \\ 0 & 1 & \frac{1}{4} & 0 \end{bmatrix}$$

$$P^{2}; P^{3}; P^{4}$$

	$\left[\begin{array}{c} \frac{1}{4} \end{array}\right]$	0	$\frac{3}{8}$	$\frac{1}{8}$
	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{5}{16}$	0
	0	$\frac{1}{4}$	$\frac{1}{8}$	$\frac{1}{16}$
	$\frac{1}{2}$	0	$\frac{1}{16}$	$\frac{5}{16}$
	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{4}$	$\frac{3}{32}$
	$\frac{1}{4}$	0	$\frac{13}{64}$	$\frac{9}{64}$
	$\frac{1}{8}$	$\frac{1}{16}$	$\frac{3}{64}$	$\frac{3}{32}$
	$\frac{1}{4}$	$\frac{5}{16}$	$\frac{11}{32}$	$\frac{1}{64}$
	$\frac{1}{8}$	$\frac{3}{32}$	$\frac{19}{128}$	$\frac{3}{32}$
	$\frac{1}{8}$	$\frac{9}{64}$	$\frac{27}{128}$	$\frac{13}{256}$
-	3 32	$\frac{3}{32}$	$\frac{25}{256}$	$\frac{7}{256}$
-	9 32	$\frac{1}{64}$	$\frac{55}{256}$	$\frac{21}{128}$

(1)