Office Hour Help: M \& W 2:30-4:00, Tu 2:00-3:30, \& F 1:30-2:30 or by appointment. Website: http://math.hws.edu/~mitchell/Math204S16/index.php.

Practice and Reading

1. (a) Review Sections 5.2 and 5.3 . We will discuss stage-matrix models in the final classes.
(b) Read the Case Study on Owl populations (handout). We will conclude the term with a study of stage-matrix models. Skim section 5.6 pages 301 -middle of 303,307(Owls)-309 in your text.
2. (a) Practice. New: Page 286ff: \#1(see Example 2), 3, 5, 7, 9, 11, 17, 21.
(b) Previously suggested: Practice. First try Page 273 \#1, 3, 7, 9, 15. Now go back and try Page 271 \#3, 7, 9, 13, 17. Now try Page 271 21, 23 (for 2×2 only). Now try Finally try \#35. This shows the utility of a basis of eigenvectors.
(c) Key Terms: eigenvalue, eigenvector, algebraic multiplicity, characteristic equation (polynomial), geometric multiplicity, similarity, diagonalizable, eigenvector basis for \mathbb{R}^{n}.

On the next assignment

1. Page 286-287: Just find P and D if possible: \#8, 10, and 12. Note for \#12 you are given the eigenvalues.
2. Here's an easy problem: Without doing any calculation give an eigenvalue of $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 1 & 2 & 3 \\ 1 & 2 & 3\end{array}\right]$. Hint: Connections Extension to Eigenvalues.
3. Suppose that an $n \times n$ matrix A has eigenvector \mathbf{v}_{1} corresponding to eigenvalue λ_{1}. On the last assignment, you proved that $A^{2} \mathbf{v}_{1}=\lambda_{1}^{2} \mathbf{v}$.
(a) Assume that for some positive integer k, you know $A^{k} \mathbf{v}_{1}=\lambda_{1}^{k} \mathbf{v}_{1}$. Prove that $A^{k+1} \mathbf{v}_{1}=\lambda_{1}^{k+1} \mathbf{v}_{1}$. Hint: Think of A^{k+1} as $A A^{k}$.

Comment: Here's what the previous part means. Since we know that A has eigenvector \mathbf{v}_{1} corresponding to eigenvalue λ_{1}, we know that $A^{1} \mathbf{v}_{1}=\lambda_{1}^{1} \mathbf{v}_{1}$. By part (a) with $k=1$, we now know that $A^{k+1} \mathbf{v}_{1}=A^{1+1} \mathbf{v}_{1}=A^{2} \mathbf{v}_{1}=\lambda_{1}^{2} \mathbf{v}_{1}$. By part (a) again with $k=2$, we now know that $A^{k+1} \mathbf{v}_{1}=A^{2+1} \mathbf{v}_{1}=A^{3} \mathbf{v}_{1}=\lambda_{1}^{3} \mathbf{v}_{1}$. By part (a) with $k=3$, we now know that $A^{k+1} \mathbf{v}_{1}=A^{3+1} \mathbf{v}_{1}=A^{4} \mathbf{v}_{1}=\lambda_{1}^{4} \mathbf{v}_{1}$, and so on. So we have shown

THEOREM 4.3.2. Suppose that a square matrix A has eigenvector \mathbf{v}_{1} corresponding to eigenvalue λ_{1}. Then for any positive integer $n, A^{n} \mathbf{v}_{1}=\lambda_{1}^{n} \mathbf{v}_{1}$
(b) Suppose that an $n \times n$ matrix A has eigenvector \mathbf{v}_{1} corresponding to λ_{1}. Let c be any scalar. Using the theorem above and basic matrix algebra, prove: For any positive integer $n, A^{n}\left(c \mathbf{v}_{1}\right)=c \lambda_{1}^{n} \mathbf{v}$. (This is a quick proof.)
(c) Ok, now go a step further. Suppose that an $n \times n$ matrix A has eigenvectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}$ with corresponding eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{p}$. If the vector \mathbf{x} can be expressed as $\mathbf{x}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{p} \mathbf{v}_{p}$, then use your result above and matrix algebra to show

$$
A^{n} \mathbf{x}=c_{1} \lambda_{1}^{n} \mathbf{v}_{1}+c_{2} \lambda_{2}^{n} \mathbf{v}_{2}+\cdots+c_{p} \lambda_{p}^{n} \mathbf{v}_{p}
$$

Class Work—The proof of The Diagonalization Theorem

Definition. An $n \times n$ matrix A is diagonalizable if A is similar to a diagonal matrix. (That is, $A=P D P^{-1}$, where D is diagonal. Note: This also means $P^{-1} A P=D$.)

The Diagonalization Theorem. An $n \times n$ matrix A is diagonalizable if and only if A has n independent eigenvectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$. In fact, if $P=\left[\mathbf{v}_{1} \mathbf{v}_{2} \ldots \mathbf{v}_{n}\right]$ and

$$
D=\left[\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_{n}
\end{array}\right]
$$

is the diagonal matrix whose diagonal entries are the eigenvalues corresponding to $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$, then $A=P D P^{-1}$.

Proof. \Rightarrow. Given A is diagonalizable. So $A=$ \qquad where \qquad is invertible and \qquad is \qquad So $A P=$ \qquad Let $P=\left[\begin{array}{llll}\mathbf{v}_{1} & \mathbf{v}_{2} & \ldots & \mathbf{v}_{n}\end{array}\right]$. Then

$$
A P=A\left[\mathbf{v}_{1} \mathbf{v}_{2} \ldots \mathbf{v}_{n}\right]=[
$$

while, since D is diagonal with diagonal entries $\lambda_{1}, \ldots, \lambda_{n}$, then
$P D=\left[\begin{array}{llll}\mathbf{v}_{1} & \mathbf{v}_{2} & \ldots & \mathbf{v}_{n}\end{array}\right]\left[\begin{array}{cccc}\lambda_{1} & 0 & \cdots & 0 \\ 0 & \lambda_{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_{n}\end{array}\right]=[$
But $A P=P D$ so $A \mathbf{v}_{1}=$ \qquad so \qquad is an corresponding to \qquad Similarly for $\mathbf{v}_{2} \ldots \mathbf{v}_{n}$. Since $P=\left[\mathbf{v}_{1} \mathbf{v}_{2} \ldots \mathbf{v}_{n}\right]$ is invertible, $\mathbf{v}_{1} \mathbf{v}_{2} \ldots \mathbf{v}_{n}$ are \qquad by the Connections Theorem
(IMT).
\Leftarrow Given A has n independent eigenvectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ corresponding to $\lambda_{1}, \ldots, \lambda_{n}$ (λ^{\prime} 's are not necessarily, distinct by the way). Let $P=\left[\mathbf{v}_{1} \mathbf{v}_{2} \ldots \mathbf{v}_{n}\right]$. P is \qquad by the Connections Theorem (IMT). Let

$$
D=\left[\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_{n}
\end{array}\right]
$$

Then

$$
A P=[\quad]=\left[\lambda_{1} \mathbf{v}_{1} \ldots \lambda_{n} \mathbf{v}_{n}\right]=P D
$$

because $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ are \qquad . So

$$
A P=P D \Rightarrow A=
$$

\qquad
So A is \qquad .
with(LinearAlgebra) :
Be careful when determining whether a stochastic matrix P is regular. Looking at P^{2} may not be sufficient. higher powers of P may be required before all entries are positive. Here's a 4 x 4 matrix whose first three powers contain 0 s , but whose fourth power has all positive entries. Suppose this were a mouse maze, could you interpret the transition matrix?

$$
\begin{aligned}
& P:=\left[\begin{array}{cccc}
\frac{1}{2} & 0 & \frac{1}{2} & 0 \\
\frac{1}{2} & 0 & 0 & \frac{1}{4} \\
0 & 0 & \frac{1}{4} & \frac{1}{4} \\
0 & 1 & \frac{1}{4} & 0
\end{array}\right]: \\
& P^{2} ; P^{3} ; P^{4}
\end{aligned}
$$

$$
\left[\begin{array}{cccc}
\frac{1}{4} & 0 & \frac{3}{8} & \frac{1}{8} \\
\frac{1}{4} & \frac{1}{4} & \frac{5}{16} & 0 \\
0 & \frac{1}{4} & \frac{1}{8} & \frac{1}{16} \\
\frac{1}{2} & 0 & \frac{1}{16} & \frac{5}{16}
\end{array}\right]
$$

$$
\left[\begin{array}{cccc}
\frac{1}{8} & \frac{1}{8} & \frac{1}{4} & \frac{3}{32} \\
\frac{1}{4} & 0 & \frac{13}{64} & \frac{9}{64} \\
\frac{1}{8} & \frac{1}{16} & \frac{3}{64} & \frac{3}{32} \\
\frac{1}{4} & \frac{5}{16} & \frac{11}{32} & \frac{1}{64}
\end{array}\right]
$$

$$
\left[\begin{array}{cccc}
\frac{1}{8} & \frac{3}{32} & \frac{19}{128} & \frac{3}{32} \tag{1}\\
\frac{1}{8} & \frac{9}{64} & \frac{27}{128} & \frac{13}{256} \\
\frac{3}{32} & \frac{3}{32} & \frac{25}{256} & \frac{7}{256} \\
\frac{9}{32} & \frac{1}{64} & \frac{55}{256} & \frac{21}{128}
\end{array}\right]
$$

