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Office Hour Help: M & W 2:30–4:00, Tu 2:00–3:30, & F 1:30–2:30 or by appointment. Website:

http://math.hws.edu/~mitchell/Math204S16/index.php.

Practice and Reading

1. (a) Review Sections 5.2 and 5.3. We will discuss stage-matrix models in the final
classes.

(b) Read the Case Study on Owl populations (handout). We will conclude the term
with a study of stage-matrix models. Skim section 5.6 pages 301–middle of
303, 307(Owls)–309 in your text.

2. (a) Practice. New: Page 286ff: #1(see Example 2), 3, 5, 7, 9, 11, 17, 21.

(b) Previously suggested: Practice. First try Page 273 #1, 3, 7, 9, 15. Now go back
and try Page 271 #3, 7, 9, 13, 17. Now try Page 271 21, 23 (for 2× 2 only). Now
try Finally try #35. This shows the utility of a basis of eigenvectors.

(c) Key Terms: eigenvalue, eigenvector, algebraic multiplicity, characteristic equa-
tion (polynomial), geometric multiplicity, similarity, diagonalizable, eigenvector
basis for Rn.

On the next assignment

1. Page 286–287: Just find P and D if possible: #8, 10, and 12. Note for #12 you are
given the eigenvalues.

2. Here’s an easy problem: Without doing any calculation give an eigenvalue of

A =

1 2 3
1 2 3
1 2 3

. Hint: Connections Extension to Eigenvalues.

3. Suppose that an n× n matrix A has eigenvector v1 corresponding to eigenvalue
λ1. On the last assignment, you proved that A2v1 = λ2

1v.

(a) Assume that for some positive integer k, you know Akv1 = λk
1v1. Prove that

Ak+1v1 = λk+1
1 v1. Hint: Think of Ak+1 as AAk.

Comment: Here’s what the previous part means. Since we know that A has eigen-
vector v1 corresponding to eigenvalue λ1, we know that A1v1 = λ1

1v1. By part (a)
with k = 1, we now know that Ak+1v1 = A1+1v1 = A2v1 = λ2

1v1. By part (a) again
with k = 2, we now know that Ak+1v1 = A2+1v1 = A3v1 = λ3

1v1. By part (a) with
k = 3, we now know that Ak+1v1 = A3+1v1 = A4v1 = λ4

1v1, and so on. So we have
shown

THEOREM 4.3.2. Suppose that a square matrix A has eigenvector v1 corresponding to eigen-
value λ1. Then for any positive integer n, Anv1 = λn

1 v1

(b) Suppose that an n × n matrix A has eigenvector v1 corresponding to λ1. Let
c be any scalar. Using the theorem above and basic matrix algebra, prove: For
any positive integer n, An(cv1) = cλn

1 v. (This is a quick proof.)

(c) Ok, now go a step further. Suppose that an n × n matrix A has eigenvectors
v1, v2, . . . , vp with corresponding eigenvalues λ1, λ2, . . . , λp. If the vector x can
be expressed as x = c1v1 + c2v2 + · · ·+ cpvp, then use your result above and
matrix algebra to show

Anx = c1λn
1 v1 + c2λn

2 v2 + · · ·+ cpλn
pvp
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Class Work—The proof of The Diagonalization Theorem

Definition. An n × n matrix A is diagonalizable if A is similar to a diagonal ma-
trix. (That is, A = PDP−1, where D is diagonal. Note: This also means P−1 AP = D.)

The Diagonalization Theorem. An n× n matrix A is diagonalizable if and only if A
has n independent eigenvectors {v1, v2, . . . , vn}. In fact, if P = [v1 v2 . . . vn] and

D =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn


is the diagonal matrix whose diagonal entries are the eigenvalues corresponding to
{v1, v2, . . . , vn}, then A = PDP−1.

Proof. ⇒. Given A is diagonalizable. So A = where is

invertible and is . So AP = . Let

P = [v1 v2 . . . vn]. Then

AP = A[v1 v2 . . . vn] = [ ]

while, since D is diagonal with diagonal entries λ1, . . . , λn, then

PD = [v1 v2 . . . vn]


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn

 = [ ]

But AP = PD so Av1 = , so is an
corresponding to . Similarly for v2 . . . vn. Since P = [v1 v2 . . . vn] is invert-

ible, v1 v2 . . . vn are by the Connections Theorem
(IMT).

⇐ Given A has n independent eigenvectors {v1, v2, . . . , vn} corresponding to λ1, . . . , λn

(λ’s are not necessarily, distinct by the way). Let P = [v1 v2 . . . vn]. P is by
the Connections Theorem (IMT). Let

D =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn


Then

AP = [ ] = [λ1v1 . . . λnvn] = PD

because {v1, v2, . . . , vn} are . So

AP = PD ⇒ A =

So A is .
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(1)(1)

with LinearAlgebra :
Be careful when determining whether a stochastic matrix P is regular. Looking at P2 may not be sufficient. 
higher powers of P may be required before all entries are positive. Here's a 4 x 4 matrix whose first three 
powers contain 0s, but whose  fourth power has all positive entries. Suppose this were a mouse maze, could 
you interpret the transition matrix?

Pd

1
2 0 1

2 0

1
2 0 0 1

4

0 0 1
4

1
4

0 1 1
4 0

:

P2; P3; P4

1
4 0 3

8
1
8

1
4

1
4

5
16 0

0 1
4

1
8

1
16

1
2 0 1

16
5

16

1
8

1
8

1
4

3
32

1
4 0 13

64
9

64
1
8

1
16

3
64

3
32

1
4

5
16

11
32

1
64

1
8

3
32

19
128

3
32

1
8

9
64

27
128

13
256

3
32

3
32

25
256

7
256

9
32

1
64

55
256

21
128
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