with(LinearAlgebra) :
The transition matrix is $P:=\left[\begin{array}{ccc}\frac{1}{2} & \frac{1}{3} & 0 \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{2} \\ 0 & \frac{1}{3} & \frac{1}{2}\end{array}\right]:$
Note the use of fractions to get exact values. While the mouse cannot go directly from cell 1 to 3 (or vice versa) it can get there in two moves, so we expect P^{2} to have all positive entries. P^{2}

$$
\left[\begin{array}{ccc}
\frac{5}{12} & \frac{5}{18} & \frac{1}{6} \\
\frac{5}{12} & \frac{4}{9} & \frac{5}{12} \\
\frac{1}{6} & \frac{5}{18} & \frac{5}{12}
\end{array}\right]
$$

(1)

So P is regular. So it should have a unique steady-state vector.
ReducedRowEchelonForm (P - IdentityMatrix(3))

$$
\left[\begin{array}{ccc}
1 & 0 & -1 \tag{2}\\
0 & 1 & -\frac{3}{2} \\
0 & 0 & 0
\end{array}\right]
$$

The solution is $w:=\left[\begin{array}{c}1 \\ \frac{3}{2} \\ 1\end{array}\right]:$ To eliminate fractions use $\mathrm{x}_{3}=2$ so $w:=\left[\begin{array}{l}2 \\ 3 \\ 2\end{array}\right]:$
So the steady state probability vector is $q:=\frac{1}{7} w$

$$
\left[\begin{array}{c}
\frac{2}{7} \tag{3}\\
\frac{3}{7} \\
\frac{2}{7}
\end{array}\right]
$$

Check: P. q

$$
\left[\begin{array}{c}
\frac{2}{7} \tag{4}\\
\frac{3}{7} \\
\frac{2}{7}
\end{array}\right]
$$

Does $\mathrm{P}=[\mathrm{q} \mathrm{q} . . . \mathrm{q}]$? Here we use evalf to get a decimal answer: $\operatorname{evalf}\left(P^{100}\right)$

$$
\left[\begin{array}{lll}
0.2857142857 & 0.2857142857 & 0.2857142857 \tag{5}\\
0.4285714286 & 0.4285714286 & 0.4285714286 \\
0.2857142857 & 0.2857142857 & 0.2857142857
\end{array}\right]
$$

Yes, the colum entries are approximately $2 / 7,4 / 7,2 / 7$.

