with(LinearAlgebra):

The transition matrix is $P := \begin{bmatrix} \frac{1}{2} & \frac{1}{3} & 0 \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{2} \\ 0 & \frac{1}{3} & \frac{1}{2} \end{bmatrix}$: Note the use of fractions to get exact values. While the mouse cannot go directly from cell 1 to 3 (or vice versa) it can get there in two means, so we exact values.

there in two moves, so we expect P^2 to have all positive entries. P^2

So P is regular. So it should have <i>ReducedRowEchelonForm</i> (<i>P</i> – <i>Ia</i>	$\begin{bmatrix} \frac{5}{12} & \frac{5}{18} & \frac{1}{6} \\ \frac{5}{12} & \frac{4}{9} & \frac{5}{12} \\ \frac{1}{6} & \frac{5}{18} & \frac{5}{12} \end{bmatrix}$ a unique steady-state vector. <i>dentityMatrix</i> (3))	(1)
	$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & -\frac{3}{2} \\ 0 & 0 & 0 \end{bmatrix}$	(2)
The solution is $w := \begin{bmatrix} 1 \\ \frac{3}{2} \\ 1 \end{bmatrix}$: To	eliminate fractions use $x_3 = 2$ so $w := \begin{bmatrix} 2 \\ 3 \\ 2 \end{bmatrix}$:	
So the steady state probability vec	tor is $q := \frac{1}{7} w$	
	$\begin{bmatrix} \frac{2}{7} \\ \frac{3}{7} \\ \frac{2}{7} \end{bmatrix}$	(3)
Check: P.q		
	$\begin{bmatrix} \frac{2}{7} \\ \frac{3}{7} \\ \frac{2}{7} \end{bmatrix}$	(4)
Does $P = [q q \dots q]$? Here we us	se evalf to get a decimal answer: $evalf(P^{100})$	
	0.2857142857 0.2857142857 0.2857142857 0.4285714286 0.4285714286 0.4285714286 0.2857142857 0.2857142857 0.2857142857	(5)

Yes, the colum entries are approximately 2/7, 4/7, 2/7.