Some Practice Problems

By no means are these comprehensive. These represent some leftover problems.

1. (a) Let \mathbb{F} denote the set all functions that are defined for all real numbers. Let $\mathbb{W}=\{f \in \mathbb{F} \mid f(1)=4 f(2)\}$. Is \mathbb{W} a subspace of \mathbb{F} ?
(b) Let $\mathbb{W}=\{f \in \mathbb{F} \mid f(3)+f(2)=1\}$. Is \mathbb{W} a subspace of \mathbb{F} ?
2. Let \mathbb{P} be the set of all polynomials (of any degree). Define $T: \mathbb{P} \rightarrow \mathbb{P}$ by $T(\mathbf{p})=$ $t \mathbf{p}^{\prime}(t)$. Determine whether T is a linear transformation.
3. Hint: In each of these questions, convert the given vectors into column vectors in \mathbb{R}^{n} and solve the problem as you would in \mathbb{R}^{n}.
(a) Is $S=\left\{1+x, x-x^{2}, 1-x^{2}\right\}$ a basis for P_{2} ? Justify your answer.
(b) Is $\left\{\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right], \quad\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right], \quad\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\right\}$ a basis for $M_{2 \times 2}$?
(c) Is $\left\{\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right], \quad\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right], \quad\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right], \quad\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]\right\}$ a basis for $M_{2 \times 2}$?
(d) You should have found that S in part (a) was a basis. If $\mathbf{q}=1+2 x+3 x^{2}$, find [q] ${ }_{S}$
4. (a) Prove: If A and B are similar $n \times n$ matrices and A is not invertible, then B is not invertible.
(b) Suppose that A, B, and C are all $n \times n$ matrices. Prove: If A is similar to B and B is similar to C, then A is similar to C.
5. For what values of k, if any, is $B=\left\{\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right],\left[\begin{array}{l}2 \\ k \\ k\end{array}\right],\left[\begin{array}{l}2 \\ 4 \\ k\end{array}\right]\right\}$ a basis for \mathbb{R}^{3} ? Justify your answer. (This problem is similar to one on Exam 3, but it is not identical to it.
6. For each set of vectors, determine whether they are a basis for \mathbb{R}^{3}. If not, explain why.
(a) $\left\{\left[\begin{array}{r}3 \\ 1 \\ -4\end{array}\right],\left[\begin{array}{l}2 \\ 5 \\ 6\end{array}\right]\right\}$
(b) $\left\{\left[\begin{array}{l}1 \\ 1 \\ 4\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 2\end{array}\right],\left[\begin{array}{l}2 \\ 5 \\ 6\end{array}\right]\right\}$
(c) $\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{r}0 \\ 2 \\ -2\end{array}\right],\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 2\end{array}\right]\right\}$
(d) $\left\{\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}2 \\ 5 \\ 6\end{array}\right],\left[\begin{array}{l}3 \\ 8 \\ 9\end{array}\right]\right\}$
7. Explain why $\mathbb{W}=\left\{\left[\begin{array}{c}a+b+c \\ 2 a+3 b-c \\ 2 a+4 b-4 c\end{array}\right] \in \mathbb{R}^{3}: a, b,, c \in \mathbb{R}\right\}$ is a subspace of \mathbb{R}^{3}.
8. Markov chain: Page $260-261, \# 3$ and 13 , which go together.
9. Rank: Page 237, \#7, 9, 15, and 19. (See answers in back of text.)
10. Diagonalize $A=\left[\begin{array}{ccc}0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3\end{array}\right]$ if possible by finding P and D.
11. Great Problem: Page 261, \#17 (answer is in back of text).
