Some Practice Problems

By no means are these comprehensive. These represent some leftover problems.

- **1.** (*a*) Let \mathbb{F} denote the set all functions that are defined for all real numbers. Let $\mathbb{W} = \{ f \in \mathbb{F} \mid f(1) = 4f(2) \}$. Is \mathbb{W} a subspace of \mathbb{F} ?
 - (b) Let $\mathbb{W} = \{ f \in \mathbb{F} \mid f(3) + f(2) = 1 \}$. Is \mathbb{W} a subspace of \mathbb{F} ?
- **2.** Let \mathbb{P} be the set of all polynomials (of any degree). Define $T : \mathbb{P} \to \mathbb{P}$ by $T(\mathbf{p}) =$ $t\mathbf{p}'(t)$. Determine whether *T* is a linear transformation.
- 3. Hint: In each of these questions, convert the given vectors into column vectors in \mathbb{R}^n and solve the problem as you would in \mathbb{R}^n .
 - (a) Is $S = \{1 + x, x x^2, 1 x^2\}$ a basis for P_2 ? Justify your answer.
 - (b) Is $\left\{ \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right\}$ a basis for $M_{2 \times 2}$? (c) Is $\left\{ \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \right\}$ a basis for $M_{2 \times 2}$?

 - (*d*) You should have found that S in part (a) was a basis. If $\mathbf{q} = 1 + 2x + 3x^2$, find $[\mathbf{q}]_{S}$
- **4.** (*a*) Prove: If A and B are similar $n \times n$ matrices and A is not invertible, then B is not invertible.
 - (b) Suppose that A, B, and C are all $n \times n$ matrices. Prove: If A is similar to B and *B* is similar to *C*, then *A* is similar to *C*.

5. For what values of *k*, if any, is $B = \left\{ \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ k \\ k \end{bmatrix}, \begin{bmatrix} 2 \\ 4 \\ k \end{bmatrix} \right\}$ a basis for \mathbb{R}^3 ? Justice not identical

tify your answer. (This problem is similar to one on Exam 3, but it is not identical to it.

6. For each set of vectors, determine whether they are a basis for \mathbb{R}^3 . If not, explain why.

$$(a) \left\{ \begin{bmatrix} 3\\ 1\\ -4 \end{bmatrix}, \begin{bmatrix} 2\\ 5\\ 6 \end{bmatrix} \right\}$$
$$(b) \left\{ \begin{bmatrix} 1\\ 1\\ 4 \end{bmatrix}, \begin{bmatrix} 0\\ 1\\ 2 \end{bmatrix}, \begin{bmatrix} 2\\ 5\\ 6 \end{bmatrix} \right\}$$
$$(c) \left\{ \begin{bmatrix} 1\\ 1\\ 1\\ 1 \end{bmatrix}, \begin{bmatrix} 0\\ 2\\ -2 \end{bmatrix}, \begin{bmatrix} 1\\ 2\\ 3 \end{bmatrix}, \begin{bmatrix} 1\\ 0\\ 2 \end{bmatrix} \right\}$$
$$(d) \left\{ \begin{bmatrix} 1\\ 2\\ 3 \end{bmatrix}, \begin{bmatrix} 2\\ 5\\ 6 \end{bmatrix}, \begin{bmatrix} 3\\ 8\\ 9 \end{bmatrix} \right\}$$
$$7. \text{ Explain why } \mathbb{W} = \left\{ \begin{bmatrix} a+b+c\\ 2a+3b-c\\ 2a+4b-4c \end{bmatrix} \in \mathbb{R}^3 : a, b, c \in \mathbb{R} \right\} \text{ is a subspace of } \mathbb{R}^3.$$

- 8. Markov chain: Page 260–261, #3 and 13, which go together.
- **9.** Rank: Page 237, #7, 9, 15, and 19. (See answers in back of text.)

2

	0	0	-2	
10. Diagonalize $A =$	1	2	1	if possible by finding P and D .
	1	0	3	

11. Great Problem: Page 261, #17 (answer is in back of text).