Math 204: Practice Problems around the time of Exam 3

By no means is this complete! For example, there are no determinant property questions.

1. a) Find a basis for the subspace of H of \mathbb{R}^{3} spanned by $\left[\begin{array}{c}1 \\ -2 \\ 0\end{array}\right],\left[\begin{array}{c}-3 \\ 4 \\ 1\end{array}\right],\left[\begin{array}{l}8 \\ 6 \\ 5\end{array}\right],\left[\begin{array}{c}-3 \\ 0 \\ 7\end{array}\right]$.
b) Find $\operatorname{dim} H$.
2. a) Let $B=\left\{\left[\begin{array}{l}1 \\ 0 \\ 3\end{array}\right],\left[\begin{array}{l}2 \\ 1 \\ 8\end{array}\right],\left[\begin{array}{c}1 \\ -1 \\ 2\end{array}\right]\right\}$. Show that B is a basis for \mathbb{R}^{3}.
b) If $\mathbf{x}=\left[\begin{array}{c}3 \\ -5 \\ 4\end{array}\right]$, determine $[\mathbf{x}]_{B}$.
3. Let $\vec{p}_{1}(t)=1+t^{2}, \vec{p}_{2}(t)=2-t+3 t^{2}, P_{3}(t)=1+t-3 t^{2}$.
a) Use coordinate vectors to show that these vectors are a basis for \mathbb{P}_{2}.
b) Consider the basis $\mathcal{B}=\left\{\vec{p}_{1}, \vec{p}_{2}, \vec{p}_{3}\right\}$ for \mathbb{P}_{2}. Find \vec{q} in \mathbb{P}_{2} given that $[q]_{\mathcal{B}}=\left[\begin{array}{r}-3 \\ 1 \\ 2\end{array}\right]$.
4. If $A=\left[\begin{array}{cccc}-2 & 4 & -2 & -4 \\ 2 & -6 & -3 & 1 \\ -3 & 8 & 2 & -3\end{array}\right]$, find bases for $\operatorname{Col} A$ and $\mathrm{Nul} A$ and determine their respective dimensions.
5. Let $S=\left\{\left[\begin{array}{ll}1 & 3 \\ 2 & 5\end{array}\right],\left[\begin{array}{ll}4 & 12 \\ 8 & 20\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 1 & 2\end{array}\right],\left[\begin{array}{cc}2 & 5 \\ 3 & 8\end{array}\right],\left[\begin{array}{cc}-1 & 5 \\ 2 & 8\end{array}\right]\right\}$. Find a basis of Span S and find its dimension.
6. Page $223 \# 21$.
7. Let $T: M_{2 \times 2} \rightarrow \mathbb{R}^{2}$ by $T\left(\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\right)=\left[\begin{array}{c}a+2 d \\ b+c-d\end{array}\right]$. Find a basis for $\operatorname{ker} T$ and determine $\operatorname{dim} \operatorname{ker} T$.
8. a) Show that the transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{P}_{2}$ by $T\left(\left[\begin{array}{l}a \\ b\end{array}\right]\right)=(a+b)+a t+(b-a) t^{2}$ is linear.
b) Show that it is one-to-one. (Hint: One method is to determine $\operatorname{ker} T$.)
9. a) Determine whether $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by $T\left(\left(\left[\begin{array}{l}a \\ b\end{array}\right]\right)=\left[\begin{array}{c}a+b \\ b^{2}\end{array}\right]\right.$ is a linear transformation.
b) $T: \mathbb{P}_{2} \rightarrow \mathbb{R}^{2}$ by $T(\mathbf{p})=\left[\begin{array}{c}\mathbf{p}(1) \\ 2 \mathbf{p}(0)\end{array}\right]$ is a linear transformation. (XC Bonus: If so, what is ker T ? Hint: For this part use that $p(t)=a+b t+c t^{2}$. Do not use this for checking linearity.)
10. Is $\mathbb{W}=\left\{\left[\begin{array}{c}a \\ a^{2}\end{array}\right]: a \in \mathbb{R}\right\}$ a subspace of \mathbb{R}^{2} ?
11. Is $\mathbb{W}=\left\{\mathbf{p} \in \mathbb{P}_{5}: \int_{0}^{1} \mathbf{p}(t) d t=1\right\}$ a subspace of \mathbb{P}_{5} ?
12. Let $T: \mathbb{V} \rightarrow \mathbb{W}$ be a linear transformation. Prove that $\operatorname{ker} T$ is a subspace of \mathbb{V}. (We proved this in class, can you do the proof with looking it up?)
13. Page $196 \# 3$. (The answer is correct, but it references the a page number from the earlier edition of the text.)
14. Return to practice problem $\# 3$ above. If $\mathbf{p}(t)=3+t+5 t^{2}$ determine $[\mathbf{p}]_{B}$.
15. (Think!) Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation that is one-to-one. What is the dimension of the Range of T ? (Hint: Think about the standard matrix for this transformation.)
16. (More thinking!) Suppose $\mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{p}_{3}, \mathbf{p}_{4}$ are polynomials so that $\operatorname{Span}\left\{\mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{p}_{3}, \mathbf{p}_{4}\right\}=H$ is a two-dimensional subspace in \mathbb{P}_{5}. Describe how to find a basis for H by examining the four polynomials and doing almost no work.
17. Page 237, \#21. (The answer is correct, but it again references the wrong page number.)
