Math 204: Practice Problems around the time of Exam 3

By no means is this complete! For example, there are no determinant property questions.

- **1. a)** Find a basis for the subspace of H of \mathbb{R}^3 spanned by $\begin{vmatrix} 1 \\ -2 \\ 0 \end{vmatrix}$, $\begin{vmatrix} -3 \\ 4 \\ 1 \end{vmatrix}$, $\begin{vmatrix} 8 \\ 6 \\ 5 \end{vmatrix}$, $\begin{vmatrix} -3 \\ 0 \\ 7 \end{vmatrix}$.
 - **b)** Find dim H.

2. a) Let
$$B = \left\{ \begin{bmatrix} 1\\0\\3 \end{bmatrix}, \begin{bmatrix} 2\\1\\8 \end{bmatrix}, \begin{bmatrix} 1\\-1\\2 \end{bmatrix} \right\}$$
. Show that B is a basis for \mathbb{R}^3 .
b) If $\mathbf{x} = \begin{bmatrix} 3\\-5\\4 \end{bmatrix}$, determine $[\mathbf{x}]_B$.

3. Let $\vec{p_1}(t) = 1 + t^2$, $\vec{p_2}(t) = 2 - t + 3t^2$, $P_3(t) = 1 + t - 3t^2$. **a)** Use coordinate vectors to show that these vectors are a basis for \mathbb{P}_2 .

b) Consider the basis $\mathcal{B} = \{\vec{p_1}, \vec{p_2}, \vec{p_3}\}$ for \mathbb{P}_2 . Find \vec{q} in \mathbb{P}_2 given that $[q]_{\mathcal{B}} = \begin{bmatrix} -3 \\ 1 \\ 2 \end{bmatrix}$.

4. If $A = \begin{bmatrix} -2 & 4 & -2 & -4 \\ 2 & -6 & -3 & 1 \\ -3 & 8 & 2 & -3 \end{bmatrix}$, find bases for Col A and Nul A and determine their respective dimensions.

- **5.** Let $S = \left\{ \begin{bmatrix} 1 & 3 \\ 2 & 5 \end{bmatrix}, \begin{bmatrix} 4 & 12 \\ 8 & 20 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 2 \end{bmatrix}, \begin{bmatrix} 2 & 5 \\ 3 & 8 \end{bmatrix}, \begin{bmatrix} -1 & 5 \\ 2 & 8 \end{bmatrix} \right\}$. Find a basis of Span S and find its dimension.
- **6.** Page 223 #21.

7. Let $T: M_{2\times 2} \to \mathbb{R}^2$ by $T\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = \begin{bmatrix} a+2d \\ b+c-d \end{bmatrix}$. Find a basis for ker T and determine dim ker T.

8. a) Show that the transformation $T : \mathbb{R}^2 \to \mathbb{P}_2$ by $T\left(\begin{bmatrix} a \\ b \end{bmatrix}\right) = (a+b) + at + (b-a)t^2$ is linear. b) Show that it is one-to-one. (Hint: One method is to determine ker T.)

- **9.** a) Determine whether $T : \mathbb{R}^2 \to \mathbb{R}^2$ by $T(\left(\begin{bmatrix} a \\ b \end{bmatrix}\right) = \begin{bmatrix} a+b \\ b^2 \end{bmatrix}$ is a linear transformation.
 - **b)** $T : \mathbb{P}_2 \to \mathbb{R}^2$ by $T(\mathbf{p}) = \begin{bmatrix} \mathbf{p}(1) \\ 2\mathbf{p}(0) \end{bmatrix}$ is a linear transformation. (XC Bonus: If so, what is ker T? Hint: For this part use that $p(t) = a + bt + ct^2$. Do not use this for checking linearity.)

10. Is $\mathbb{W} = \left\{ \begin{bmatrix} a \\ a^2 \end{bmatrix} : a \in \mathbb{R} \right\}$ a subspace of \mathbb{R}^2 ?

- 11. Is $\mathbb{W} = \{\mathbf{p} \in \mathbb{P}_5 : \int_0^1 \mathbf{p}(t) dt = 1\}$ a subspace of \mathbb{P}_5 ?
- 12. Let $T : \mathbb{V} \to \mathbb{W}$ be a linear transformation. Prove that ker T is a subspace of \mathbb{V} . (We proved this in class, can you do the proof with looking it up?)
- 13. Page 196 #3. (The answer is correct, but it references the a page number from the earlier edition of the text.)
- 14. Return to practice problem #3 above. If $\mathbf{p}(t) = 3 + t + 5t^2$ determine $[\mathbf{p}]_B$.

- **15.** (Think!) Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation that is one-to-one. What is the dimension of the Range of T? (Hint: Think about the standard matrix for this transformation.)
- **16.** (More thinking!) Suppose \mathbf{p}_1 , \mathbf{p}_2 , \mathbf{p}_3 , \mathbf{p}_4 are polynomials so that $\text{Span}\{\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3, \mathbf{p}_4\} = H$ is a two-dimensional subspace in \mathbb{P}_5 . Describe how to find a basis for H by examining the four polynomials and doing almost no work.
- **17.** Page 237, #21. (The answer is correct, but it again references the wrong page number.)