Facts and Theorems for Test 1. Know and be able to use the following theorems.

See your text for the precise statements.

- 1. Uniqueness of Reduced Row-Echelon Form (Theorem 1.1)
- 2. Existence and Uniqueness Theorem (Theorem 1.2)
- 3. Properties of Scalar Multiplication and Vector Addition (p. 27)
- **4.** (*a*) Equivalent Representations Theorem (Theorem 1.3) $A\mathbf{x} = \mathbf{b}$ is the same as a vector equation and is solved using the augmented matrix $[a\,\mathbf{b}]$. (p. 36)
 - (*b*) Corollary: $A\mathbf{x} = \mathbf{b}$ has a solution if and only if \mathbf{b} is a linear combination of the columns of A (if and only if \mathbf{b} is Span $\{\mathbf{a}_1, \dots \mathbf{a}_n\}$.) (p. 36)
- 5. Spanning and Pivots Theorem: These are equivalent Theorem 1.4 (p. 37):
 - (a) There are pivots in every ROW of A.
 - (b) Columns of A span \mathbb{R}^m
 - (c) $A\mathbf{x} = \mathbf{b}$ is consistent for EVERY $\mathbf{b} \in \mathbb{R}^m$.
 - (d) EVERY **b** in \mathbb{R}^m is a linear combination of the columns of A.
- 6. Properties (Linearity) of Matrix-Vector Multiplication (Theorem 1.5)
- **7.** Homogeneous Systems are Consistent (p. 43) and Homogeneous Solutions Theorem (p. 43): $(A\mathbf{x} = \mathbf{0} \text{ has a non-trivial solution if and only if there is a free variable.)$
- **8.** Independence of Matrix Columns (p. 57) iff Ax = 0 has only the trivial solution.
- **9.** Characterization of Dependent Sets. (p.58) (A vector in the set is a linear combination of the others.)
- **10.** (a) Surplus of Vectors (More Vectors than Entries ⇒ linear dependence) (p. 59)
 - (b) Dependence of Sets Containing the Zero Vector. (p. 59)

Definitions. Memorize the definitions of these terms for the exam: row equivalent matrices, linear independence (dependence), pivot position, the span of $\{\mathbf{v}_1,\ldots,\mathbf{v}_p\}$, linear combination, homogeneous and nonhomogeneous system.

See the Glossary in the text.

Remember: iff means if and only if.

Pivot Dictionary. Results about pivots:

- (a) For a particular vector **b**: No pivot in rightmost column of augmented $[A \ \mathbf{b}] \iff A\mathbf{x} = \mathbf{b}$ is consistent
- (*b*) *A* has a pivot in every row \iff $A\mathbf{x} = \mathbf{b}$ is ALWAYS consistent for all $\mathbf{b} \iff$ the columns of *A* span \mathbb{R}^m
- (c) The *coefficient matrix* A has a pivot in every column $\iff A\mathbf{x} = \mathbf{0}$ has only the trivial solution \iff the columns of A are independent