Linear Systems

THEOREM 1.0.1 (Theorem 1.1). Uniqueness of Reduced Row-Echelon Form

THEOREM 1.0.2 (Theorem 1.2). Existence and Uniqueness Theorem

THEOREM 1.0.3. Algebra of Scalar Multiplication and Vector Addition

THEOREM 1.0.4 (Theorem 1.3). Equivalent Representations Theorem

THEOREM 1.0.5 (Theorem 1.4). Spanning and Pivots Theorem: These are equivalent

THEOREM 1.0.6 (Theorem 1.5). Properties (Linearity) of Matrix-Vector Multiplication

THEOREM 1.0.7. Homogeneous Systems and Homogeneous Solutions Theorem

THEOREM 1.0.8. Independence of Matrix Columns

THEOREM 1.0.9. Characterization of Dependent Sets

THEOREM 1.0.10. Surplus of Vectors

THEOREM 1.0.11. The Zero Vector and Dependence

Linear Transformations

THEOREM 1.0.12. Properties of Linear Transformations

THEOREM 1.0.13 (Theorem 1.10). Standard Matrix Theorem

THEOREM 1.0.14. The Onto Dictionary

THEOREM 1.0.15. The One-to-One Dictionary

Matrix Algebra

THEOREM 2.0.1. Basic matrix algebra for addition and scalar multiplication.

THEOREM 2.0.2 (Theorem 2.2). Basic matrix algebra for multiplication of matrices.

THEOREM 2.0.3 (Theorem 2.3). Algebra of Transposes.

DEFINITION 4.0.3. Definition of a Subspace

THEOREM 4.0.4. Subspaces are Vector Spaces

THEOREM 4.0.5 (Theorem 4.1). Spans are Subspaces

DEFINITION 4.0.6. The **null space** of an $m \times n$ matrix *A*

THEOREM 4.0.7 (Theorem 4.2). Nul *A* is a Subspace

DEFINITION 4.0.8. The **column space** of an $m \times n$ matrix *A*

THEOREM 4.0.9 (Theorem 4.2). Col *A* is a subspace

DEFINITION 4.0.10. A linear transformation $T : \mathbb{V} \to \mathbb{W}$

DEFINITION 4.0.11. $T : \mathbb{V} \to \mathbb{W}$ is onto.

DEFINITION 4.0.12. $T : \mathbb{V} \to \mathbb{W}$ is **one-to-one**

THEOREM 4.0.13. The Three Kernel Facts Theorem

DEFINITION 4.0.14. Linear independence and dependence (same as before).

THEOREM 4.0.15 (Theorem 4.4). Characterization of Linear Dependence.

DEFINITION 4.0.16. Basis of a vector space.

THEOREM 4.0.17 (Theorem 4.5). Spanning Set Theorem

THEOREM 4.0.18 (Theorem 4.6). Basis of Col *A*.

THEOREM 4.0.19 (Theorem 4.7). Unique Representation Theorem.

DEFINITION 4.0.20. \mathcal{B} -coordinates, $[\mathbf{x}]_{\mathcal{B}}$.

DEFINITION 4.0.21. Isomorphism.

THEOREM 4.0.22 (Theorem 4.8). The Coordinate Mapping Theorem

Know the standard bases of \mathbb{R}^n , \mathbb{P}_n , $M_{m \times n}$.

THEOREM 4.0.23 (Theorem 4.9). More Vectors than in a Basis Theorem
THEOREM 4.0.24 (Theorem 4.10). Basis have the Same Size
DEFINITION 4.0.25. Dimension of a Vector Space
THEOREM 4.0.26 (Theorem 4.11). Inflation or Expansion Theorem
THEOREM 4.0.27 (Theorem 4.12). Dasis Theorem
New Since Test 3
DEFINITION 4.0.28. Kow space of a matrix
THEOREM 4.0.29 (Theorem 4.13). Row equivalent matrices have the same row space.
THEOREM 4.0.30 (Theorem 4.14). The Rank Theorem. (Remember we proved a better version
than in the text that includes information about A^T .)
THEOREM 4.0.31 (Theorem 4.15). Connections Extension to Rank, Row <i>A</i> , Nul <i>A</i> , and Col <i>A</i> .
DEFINITION 4.0.32. Probability vector
DEFINITION 4.0.33. Stochastic matrix
DEFINITION 4.0.34. Markov chain
DEFINITION 4.0.35. Steady-state vector
DEFINITION 4.0.36. Regular stochastic matrix
THEOREM 4.0.37 (Theorem 4.18). Kegular stochastic matrices have a unique steady-state vec- tor.
Eigenvalues and Eigenvectors
DEFINITION 5.0.1. Eigenvector and eigenvalue.
DEFINITION $r_{0,2}$ Figure space of A corresponding to λ
Dentrition 5.0.2. Eigenspace of 21 corresponding to 7.
THEOREM 5.0.3 (From Classwork). Three Eigenfacts

See Page 254.

THEOREM 5.0.4. Eigenspaces are subspaces.

THEOREM 5.0.5 (Theorem 5.1). Eigenvalues of triangular matrices.

THEOREM 5.0.6 (Theorem 5.2—Jack's Proof). Eigenvectors corresponding to distinct eigenvalues

DEFINITION 5.0.7. Characteristic equation or polynomial.

DEFINITION 5.0.8. Similar matrices.

THEOREM 5.0.9 (Theorem 5.4). Eigenvalues of similar matrices.

DEFINITION 5.0.10. Diagonalizable matrix.

THEOREM 5.0.11 (Theorem 5.5). Diagonalization theorem.

THEOREM 5.0.12 (Theorem 5.6). An $n \times n$ matrix with *n* distinct eigenvalues is diagonalizable.

THEOREM 5.0.13 (Theorem 5.7(b)). *A* is diagonalizable if and only if the sum of the dimensions of its eigenspaces is n.

- **THEOREM 5.0.14** (Stage-Matrix Models: Key Points). 1. The equation $\mathbf{x}_k = A\mathbf{x}_{k-1} = A^k\mathbf{x}_0$ is a stage-matrix model of the population. *A* is an $n \times n$ matrix, where the population has been divided into *n* classes or stages.
- 2. The eigenvalues of *A* are calculated and listed in descending order of magnitude: $|\lambda_1| \ge |\lambda_2| \ge |\lambda_3| \ge \cdots \ge |\lambda_n|$. If $|\lambda_1|$ is strictly greater than $|\lambda_2|$, we call λ_1 the **dominant** eigenvalue.
- 3. If $|\lambda_1| < 1$, then the population will decrease to extinction, no matter what the initial population vector \mathbf{x}_0 is.
- 4. If λ_1 is a real number greater than 1 and all the other eigenvalues are less than 1 in magnitude, then the population is increasing exponentially (no matter what the initial population). In this case if \mathbf{v}_1 is the eigenvector corresponding to λ_1 , then the normalized eigenvector

$$\frac{1}{||\mathbf{v}_1||_1}\mathbf{v}_1 = \frac{1}{|x_1| + |x_2| + \dots + |x_n|}\mathbf{v}_1$$

gives the percentages found in each class in the long-run population distribution.