1. (12 pts) Let $A=\left|\begin{array}{cccc}a & b & c & d \\ e & f & g & h \\ i & j & k & l \\ m & n & o & p\end{array}\right|$. If $\operatorname{det} A=3$, evaluate each of the following determinants
(a) $\left|\begin{array}{llll}e & f & g & h \\ i & j & k & l \\ a & b & c & d \\ m & n & o & p\end{array}\right|=$

Reasoning/Justification:

(b) $\left|\begin{array}{cccc}a+i & b+j & c+k & d+l \\ e-i & f-j & g-k & h-l \\ i & j & k & l \\ m & n & o & p\end{array}\right|=$

Reasoning/Justification:
(c) $\left|\begin{array}{cccc}a & b & c & d \\ e & f & g & h \\ 2 i & 2 j & 2 k & 2 l \\ m & n & o & p\end{array}\right|=$

Reasoning/Justification:
(d) $\operatorname{det}(2 A)=\quad$. Think about part (c) and carefully explain your answer.
2. (a) (6 pts) What value(s) of k make the matrix $A=\left[\begin{array}{lll}k & k & 9 \\ 2 & 0 & 0 \\ 3 & 4 & k\end{array}\right]$ non-invertible? Justify your answer; show your work.
(b) (6 pts) Prove: If A is invertible, then $A \sim A^{T}$.
3. (6 pts) Complete the following definitions.
(a) An $n \times n$ matrix E is an elementary matrix if
(b) A $n \times n$ matrix A is invertible if
4. (a) (8 pts) Find the inverse of $A=\left[\begin{array}{lll}1 & 1 & 1 \\ 2 & 2 & 1 \\ 1 & 3 & 1\end{array}\right]$ if it exists.
(b) (7 pts) Evaluate $\left|\begin{array}{cccc}1 & 2 & 0 & 3 \\ -1 & 1 & -2 & 2 \\ 2 & 4 & 0 & 7 \\ 1 & 0 & 0 & 1\end{array}\right|$.
5. (a) (5 pts) True or false: If A and B are $n \times n$, then $(A-B)(A+B)=A^{2}-B^{2}$. Justify your answer.
(b) (6 pts) Prove: If A is $n \times n$ and the columns of A are independent, then the columns of A^{2} span \mathbb{R}^{n}
6. (a) (6 pts) True or false: Suppose that $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a linear transformation with standard matrix A. If $T(\mathbf{u})=T(\mathbf{v})$, where \mathbf{u} is not equal to \mathbf{v}, then the rows of A^{T} span \mathbb{R}^{n}. (Carefully prove your answer.)
(b) (6 pts) We say that a square matrix B is symmetric if $B=B^{T}$. Prove: Let A be any matrix. If $B=A A^{T}$, then B is symmetric.
7. (6 pts) Complete the definitions:
(a) A transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is onto if
(b) A transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is linear if
(c) (6 pts) Determine whether the transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by $T\left(\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]\right)=\left[\begin{array}{c}x_{1}+3 \\ 4 x_{2}\end{array}\right]$ is a linear transformation.
(d) (6 pts) Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation, where $m>n$. Carefully prove that T is not onto.
8. (6 pts) Suppose the matrix M reduces to the 3×3 identity matrix through the following series of elementary row operations: (a) $R_{1} \leftrightarrow R_{2}$; (b) $R_{2}+3 R_{1} \rightarrow R_{2}$; (c) $\frac{1}{2} R_{2} \rightarrow R_{2}$; (d) $R_{3}-5 R_{2} \rightarrow$ R_{3}; (e) $R_{1}+2 R_{2} \rightarrow R_{1}$. Find $\operatorname{det}(M)$.
9. Assume that $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ is a linear transformation. Let $\mathbf{u}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$ and assume that $T(\mathbf{u})=T\left(\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)=\left[\begin{array}{l}2 \\ 3 \\ 0\end{array}\right]$ and $T(\mathbf{v})=T\left(\left[\begin{array}{l}1 \\ 2\end{array}\right]\right)=\left[\begin{array}{c}4 \\ 6 \\ -1\end{array}\right]$.
(a) (2 pts) Determine $T(2 \mathbf{u}-\mathbf{v})$
(b) (10 pts) Determine the standard matrix A for T. You will need to compute T of some special vectors first.
(c) (4 pts) Is $\mathbf{b}=\left[\begin{array}{l}0 \\ 1 \\ 3\end{array}\right]$ in the range of T ? Justify your answer.
(d) (4 pts) Is T one-to-one? Explain carefully citing appropriate theorems.

You substitution: The following problem may be substituted for any other problem part on the exam. However, this problem is worth at most 5 points. If you substitute, clearly state for which problem this is a substitution (both here and earlier where the substitution takes place).
10. (5 pts) Suppose that T is a linear transformation and that $\{\mathbf{u}, \mathbf{v}\}$ are linearly dependent vectors in the domain of T. Prove that $T(\mathbf{u})$ and $T(\mathbf{v})$ are also linearly dependent.

Problem	Points	Score
1	12	
2	12	
3	6	
4	15	
5	11	
6	12	
7	18	
8	6	
9	20	
10	opt 5	
Total	112	

Name:

