Math 204: Test 3

Show all work on these pages to receive full credit. Put your name on the last page only.

1. (8 pts) Assume A, B, and C are 4×4 matrices and that $A=\left[\begin{array}{cccc}a & b & c & d \\ e & f & g & h \\ i & j & k & l \\ m & n & o & p\end{array}\right]$. If $\operatorname{det} A=-3$, evaluate each of the following. (No explanation required.)
a) $\operatorname{det} A^{-1}=$
b) $\operatorname{det}(2 A)=$
c) If $\operatorname{det}(B A)=-12$, then $\operatorname{det} B=$
d) $\operatorname{det}\left[\begin{array}{cccc}e & f & g-2 e & h \\ a & b & c-2 a & d \\ i & j & k-2 i & l \\ m & n & o-2 m & p\end{array}\right]=$
2. (6 pts) A square matrix A is orthogonal if $A^{-1}=A^{T}$. Prove: If A is orthogonal matrix then $\operatorname{det} A= \pm 1$. Refer to appropriate Facts and Theorems.
3. a) Basis Questions. (5pts) Complete the following definition. $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{p}\right\}$ is a basis for a vector space \mathbb{V} if:
b) (6pts) Assume $A=\left[\begin{array}{rrrrr}1 & 3 & -2 & 0 & 0 \\ 2 & 6 & -5 & -2 & -3 \\ 0 & 0 & 5 & 10 & 15 \\ 2 & 6 & 0 & 8 & 18\end{array}\right] \sim B=\left[\begin{array}{rrrrr}1 & 3 & 0 & 4 & 6 \\ 0 & 0 & 1 & 2 & 3 \\ 0 & 0 & 4 & 8 & 13 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$. Determine a basis for Nul A.
c) $(4 \mathrm{pts})$ Determine a basis for $\mathrm{Col} A$. Explicitly list the vectors.
4. a) (4pts) Is $\mathcal{B}=\left\{\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 2 \\ 1 \\ -2\end{array}\right],\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 2\end{array}\right],\left[\begin{array}{r}1 \\ 2 \\ -1 \\ 3\end{array}\right]\right\}$ a basis for \mathbb{R}^{4} ? Justify your answer.
b) $(2 \mathrm{pts})$ Fill in the blank: $\operatorname{dim} \mathbb{P}_{4}=$ \qquad .
c) $(6 \mathrm{pts})$ For what values of k, if any, is $B=\left\{\left[\begin{array}{l}k \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}k \\ 0 \\ 4\end{array}\right],\left[\begin{array}{l}9 \\ 0 \\ k\end{array}\right]\right\}$ a basis for \mathbb{R}^{3} ? Note: The same value of k is used in all three locations. Justify your answer. Think! There are at least a couple of ways to do this. One is easiest. Justify your result with appropriate Facts and Theorems.
5. a) (5pts) Complete the following definition: Let \mathbb{V} be a vector space. Then \mathbb{W} is a subspace of \mathbb{V} using the same operation as in \mathbb{V} if:
b) (6 pts) Let A be a fixed $n \times n$ matrix (A does not change in this problem). Define the subset $\mathbb{E}=\left\{\mathbf{x} \in \mathbb{R}^{n}: A \mathbf{x}=\mathbf{x}\right\}$. Carefully determine whether \mathbb{E} is a subspace of \mathbb{R}^{n}.
6. All parts of this problem are separate and unrelated.
a) (5 pts) Complete the definition: If A is an $m \times n$ matrix, then

$$
\operatorname{Nul} A=\{
$$

b) (6 pts) Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear transformation with standard $n \times n$ matrix A. If $\operatorname{dim}(\operatorname{Nul} A)=0$, is the linear transformation $T(\mathbf{x})=A \mathbf{x}$ onto? Prove your answer. (For 1 more point) Is T an isomorphism?
c) (5pts) Assume that $\mathcal{B}=\left\{\mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{p}_{3}\right\}$ is a basis for \mathbb{P}_{2} where $\mathbf{p}_{1}=1-t, \mathbf{p}_{2}=3-2 t$, and $\mathbf{p}_{3}=2 t+t^{2}$. Let $\mathbf{q}=7+t+3 t^{2}$. Determine $[\mathbf{q}]_{\mathcal{B}}$, the \mathcal{B}-coordinates of \mathbf{q}.
7. a) (5pts) Complete the definition: If $T: \mathbb{V} \rightarrow \mathbb{W}$ is a linear transformation between vector spaces, then

$$
\operatorname{ker} T=
$$

b) (7pts) You may assume that $T: \mathbb{P}_{2} \rightarrow \mathbb{R}^{2}$ by $T(\mathbf{q})=\left[\begin{array}{c}\mathbf{q}(0) \\ \mathbf{q}(-1)\end{array}\right]$ is a linear transformation. Determine a basis for ker T. Hint: Let $\mathbf{q}(t)=a+b t+c t^{2}$.
c) (3pts) $\operatorname{dim} \operatorname{ker} T=$ \qquad . Is the transformation T in the previous part one-to-one? Explain briefly.
8. a) (7pts) Prove: If A and B are $n \times n$ and $\operatorname{det}(A B)=5$, then the columns of A are a basis for \mathbb{R}^{n}. Use appropriate definitions, facts, and theorems.
b) (7 pts) Assume $T: \mathbb{V} \rightarrow \mathbb{W}$ is a linear transformation between vector spaces. Prove: If $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ is a linearly dependent set in \mathbb{V}, then $\left\{T\left(\mathbf{v}_{1}\right), \ldots, T\left(\mathbf{v}_{p}\right)\right\}$ is linearly dependent in \mathbb{W}. Use appropriate definitions, facts, and theorems.
9. $(3 \mathrm{pts})$ Let A be 8×9 matrix. If $\operatorname{dim}(\operatorname{Col} A)=6$, then $\operatorname{dim}(\operatorname{Nul} A)=$ \qquad . Briefly justify your answer.

Problem	1	2	3	4	5	6	7	8	9	Total
Points	8	6	15	12	11	16	15	14	3	100
Score										

Name:

