Math 204: Test 3

Show all work on these pages to receive full credit. Put your name on the last page only.

1. (8 pts) Assume A, B, and C are 4×4 matrices and that $A = \begin{bmatrix} a & b & c & d \\ e & f & g & h \\ i & j & k & l \\ m & n & o & p \end{bmatrix}$. If det A = -3, evaluate each of the

following. (No explanation required.)

a) det
$$A^{-1} =$$
 b) det $(2A) =$

c) If
$$\det(BA) = -12$$
, then $\det B =$
d) $\det \begin{bmatrix} e & f & g - 2e & h \\ a & b & c - 2a & d \\ i & j & k - 2i & l \\ m & n & o - 2m & p \end{bmatrix} =$

2. (6 pts) A square matrix A is orthogonal if $A^{-1} = A^T$. Prove: If A is orthogonal matrix then det $A = \pm 1$. Refer to appropriate Facts and Theorems.

3. a) Basis Questions. (5pts) Complete the following definition. $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_p\}$ is a basis for a vector space \mathbb{V} if:

b) (6pts) Assume
$$A = \begin{bmatrix} 1 & 3 & -2 & 0 & 0 \\ 2 & 6 & -5 & -2 & -3 \\ 0 & 0 & 5 & 10 & 15 \\ 2 & 6 & 0 & 8 & 18 \end{bmatrix} \sim B = \begin{bmatrix} 1 & 3 & 0 & 4 & 6 \\ 0 & 0 & 1 & 2 & 3 \\ 0 & 0 & 4 & 8 & 13 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$
. Determine a basis for Nul A.

c) (4pts) Determine a basis for Col A. Explicitly list the vectors.

4. a) (4pts) Is
$$\mathcal{B} = \left\{ \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 0\\2\\1\\-2 \end{bmatrix}, \begin{bmatrix} 1\\2\\3\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\1\\2 \end{bmatrix}, \begin{bmatrix} 1\\2\\-1\\3 \end{bmatrix} \right\}$$
 a basis for \mathbb{R}^4 ? **Justify** your answer.

- **b)** (2pts) Fill in the blank: dim $\mathbb{P}_4 =$ ____.
- c) (6pts) For what values of k, if any, is $B = \left\{ \begin{bmatrix} k \\ 2 \\ 3 \end{bmatrix}, \begin{bmatrix} k \\ 0 \\ 4 \end{bmatrix}, \begin{bmatrix} 9 \\ 0 \\ k \end{bmatrix} \right\}$ a basis for \mathbb{R}^3 ? Note: The same value of k is used in all three locations. Justify your answer. Think! There are at least a couple of ways to do this. One is easiest. Justify your result with appropriate Facts and Theorems.

5. a) (5pts) Complete the following definition: Let \mathbb{V} be a vector space. Then \mathbb{W} is a subspace of \mathbb{V} using the same operation as in \mathbb{V} if:

b) (6pts) Let A be a fixed $n \times n$ matrix (A does not change in this problem). Define the subset $\mathbb{E} = \{\mathbf{x} \in \mathbb{R}^n : A\mathbf{x} = \mathbf{x}\}$. Carefully determine whether \mathbb{E} is a **subspace** of \mathbb{R}^n .

- 6. All parts of this problem are separate and unrelated.
 - **a)** (5pts) Complete the definition: If A is an $m \times n$ matrix, then

$$\operatorname{Nul} A = \left\{ \begin{array}{c} \\ \end{array} \right\}$$

b) (6 pts) Let $T : \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation with standard $n \times n$ matrix A. If dim(Nul A) = 0, is the linear transformation $T(\mathbf{x}) = A\mathbf{x}$ onto? Prove your answer. (For 1 more point) Is T an isomorphism?

c) (5pts) Assume that $\mathcal{B} = \{\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3\}$ is a basis for \mathbb{P}_2 where $\mathbf{p}_1 = 1-t$, $\mathbf{p}_2 = 3-2t$, and $\mathbf{p}_3 = 2t+t^2$. Let $\mathbf{q} = 7+t+3t^2$. Determine $[\mathbf{q}]_{\mathcal{B}}$, the \mathcal{B} -coordinates of \mathbf{q} .

7. a) (5pts) Complete the definition: If $T: \mathbb{V} \to \mathbb{W}$ is a linear transformation between vector spaces, then

 $\ker T =$

b) (7pts) You may **assume** that $T : \mathbb{P}_2 \to \mathbb{R}^2$ by $T(\mathbf{q}) = \begin{bmatrix} \mathbf{q}(0) \\ \mathbf{q}(-1) \end{bmatrix}$ is a linear transformation. Determine a basis for ker T. Hint: Let $\mathbf{q}(t) = a + bt + ct^2$.

c) (3pts) dim ker T =_____. Is the transformation T in the previous part one-to-one? Explain briefly.

8. a) (7pts) Prove: If A and B are $n \times n$ and det(AB) = 5, then the columns of A are a basis for \mathbb{R}^n . Use appropriate definitions, facts, and theorems.

b) (7pts) Assume $T : \mathbb{V} \to \mathbb{W}$ is a linear transformation between vector spaces. Prove: If $\{\mathbf{v}_1, \ldots, \mathbf{v}_p\}$ is a linearly dependent set in \mathbb{V} , then $\{T(\mathbf{v}_1), \ldots, T(\mathbf{v}_p)\}$ is linearly dependent in \mathbb{W} . Use appropriate definitions, facts, and theorems.

9. (3pts) Let A be 8×9 matrix. If dim(Col A) = 6, then dim(Nul A) = _____. Briefly justify your answer.

Problem	1	2	3	4	5	6	7	8	9	Total
Points	8	6	15	12	11	16	15	14	3	100
Score										

Name: _____