

Debugging

CPSC 120: Principles of Computer Science • Fall 2024 2

Kinds of Errors

• syntax errors mean that the program code is invalid
– the program won’t run – the compiler gives a line number and

error message
– see Appendix A for help with common syntax errors

• bugs are problems with the program logic that show up at
runtime

– the program runs but crashes – runtime errors stem from
particular values leading to an invalid state

• see Appendix A for help with some common runtime errors

– the program runs without crashing but doesn’t do what it is
supposed to

CPSC 120: Principles of Computer Science • Fall 2024 3

Debugging

first actual
bug, 1940s

Adm. Grace Hopper, 1906-1992
computer scientist, mathematician, US
Navy rear admiral
known for: a pioneer of computer programming
– high-level English-like languages

CPSC 120: Principles of Computer Science • Fall 2024 4

Locating and Diagnosing Bugs

Tools –

• incremental development
– if you add only a small piece at a time and test as you go, any

new problem is likely to be in the part just added

• comment out sections that don't seem relevant
– if the problem goes away, the most recently commented-out

section is potentially the culprit

• remember that the program does exactly what you tell it
– observe what is wrong in the sketch and find the part of the

program where you said to do that

• use println() to trace what the program is actually doing
– print values of variables to identify places where they don't

match what you expect
– print messages to trace the flow of control – does the computer

even get to a certain point?

CPSC 120: Principles of Computer Science • Fall 2024 5

Locating and Diagnosing Bugs

Strategy –

• identify possible explanations for what is going wrong,
and take steps to rule each possibility in or out
– start with the most basic explanation
– be careful to find the root cause

CPSC 120: Principles of Computer Science • Fall 2024 6

Example

There’s supposed to be a red square, but there isn’t one.

• there isn’t code to draw the red square
– locate the line(s) in the sketch where the red square is drawn

fill(255,0,0);
rect(x,y+100,w,w);

• there is code to draw the red square but it isn’t being
executed
– use println to print something immediately before that line – do

you see that output?

fill(255,0,0);
println(“drawing square!”);
rect(x,y+100,w,w);

CPSC 120: Principles of Computer Science • Fall 2024 7

Example, continued

• the red square is being drawn, but something else is
being drawn on top of the red square
– comment out everything after the line(s) where the red square is

drawn

• the red square is being drawn, but outside the window or
with width or height 0
– use println to print out the variables involved

fill(255,0,0);
println(“drawing square! ”+x+” “+(y+100)+” “+w);
rect(x,y+100,w,w);

CPSC 120: Principles of Computer Science • Fall 2024 8

Example, continued

→ the x coordinate of the square is incorrect

fill(255,0,0);
println(“drawing square! ”+x+” “+(y+100)+” “+w);
rect(x,y+100,w,w);

• find the root cause

– is x meant to be the square’s position?
• check comments
• check rectMode – CENTER vs CORNER

– if so, the problem is x’s value
• trace backwards from where the square is drawn – where does x’s value

come from?

– if not, the problem is using (just) x as the square’s position

