Abstraction and Modularity – Functions

Abstraction and Modularity

- abstraction
 - be able to think of complex things in terms of higher level concepts, instead of only as their component parts
 - example
 - · separate the arrangement of trees and cars in the sketch from the details of how to draw a tree or a car - think of the scene as an arrangement of trees and cars, and a tree or a car as rects, ellipses, triangles
 - goal is simplifying complexity
- modularity
 - create distinct components that can be used in a variety of situations
 - example

CPSC 120: Principles of Computer Science • Fall 2025

- · create a "tree" module so you can have a scene with lots of trees instead of repeating the individual drawing commands over and over
- goals are to help with abstraction and to facilitate reuse

Abstraction and Modularity

Two motivating factors -

- laziness
 - it would be nice to draw a forest without having to write rect(...) and triangle (...) for every tree

(perhaps we could define how to draw one tree, and then place a bunch of trees)

- feasibility
 - making a complex scene gets very difficult if you have to think about the whole thing at the levels of rects and triangles and ellipses

(perhaps we could define how to draw a tree and a car and a house, and then position the tree and car and house to make the scene)

CPSC 120: Principles of Computer Science • Fall 2025

Functions

Functions (also known as procedures or subroutines or methods) are a way of creating modules that do tasks.

a list of instructions given a name

There are two parts to working with functions –

- a function definition associates a name with a list of instructions
 - "hey computer, here's what this name means, OK?"
 - parameters allow the function definition to be a template into which different values can be plugged (similar to variables)
- a function call tells the system to actually execute those statements
 - "hey computer, do that stuff now!"
 - the call provides values for the parameters

CPSC 120: Principles of Computer Science • Fall 2025

Functions

We have been using system-defined functions already -

```
rectMode(CENTER);
fill(255,0,0);
stroke(0);
rect(100,200,50,100);
x = x+random(-5,5);
y = map(noise(t),0,1,100,200);
function calls
```

We have also written function definitions for functions with a special role $-\$

```
void setup () { ... } void draw () { ... } void mouseClicked () { ... }
```

CPSC 120: Principles of Computer Science • Fall 2025

Programmer-Defined Functions

Functions generally have one of two jobs -

- · do stuff
 - e.g. size, background, fill, stroke, rectMode, ellipseMode, rect, ellipse, ...
 - · written as a statement by themselves
- compute a value for use elsewhere in the program
 - e.g. random, noise, sin, cos, max, min, ...
 - written as an expression (or part of an expression) in a place where a value is needed

We will consider specifically "do stuff" functions to draw things.

Programmer-Defined Functions

Many functions are defined by the system or provided by libraries.

You can also define your own.

CPSC 120: Principles of Computer Science • Fall 2025

Drawing Function Questions, Part 1

Do we need a drawing function?

Yes, if -

- a thing consists of more than a few shapes
- there is more than one copy of a thing (including variations) in a single frame or over a series of frames (animation or interaction)

For each drawing function identified, we need to consider both the function definition and the function call(s).

CPSC 120: Principles of Computer Science • Fall 2025

CPSC 120: Principles of Computer Science • Fall 2025

Drawing Function Questions, Part 2

For the drawing function definition –

- What is being drawn?
 - e.g. tree, car, ...
 - just one purpose!

- position, size, color, ...
- consider both multiple copies within one frame and "copies" over multiple frames due to animation or interaction
- How is it drawn?
 - include all necessary state (rectMode/ellipseMode, stroke, fill, etc) as well as the shapes to be drawn
 - · draw a picture and label the necessary elements
 - can use system variables and "what differs"
 - it is legal to use animation variables but better to view that as "what differs" instead

CPSC 120: Principles of Computer Science • Fall 2025

10

Example

Consider the two trees in the scene.

- Do we need a drawing function?
 - → yes, each tree has two shapes and there's more than one tree
- What is being drawn?
 - → a tree
- What differs from one copy to the next?
 - position (both x and y)
- How is it drawn?
 - dark green triangle, brown rectangle
 - let "position" be the center of the bottom of the trunk (red dot)
- What are the specific values for the "what differs" things?
 - tree on the left: x: 50, y: height-70
 - tree in the middle: x: width/2, y: height-100

position (red dot) – (x,y) rect center – (x,y-20) triangle – (x-30,y-40), (x,y-160), (x+30,y-40)

Drawing Function Questions, Part 3

For the function call(s) -

What are the specific values for the "what differs" things?

CPSC 120: Principles of Computer Science • Fall 2025

11