

Abstraction and Modularity – Functions

CPSC 120: Principles of Computer Science • Fall 2025 2

Abstraction and Modularity

Two motivating factors –

• laziness
– it would be nice to draw a forest without having to write rect(…)

and triangle(…) for every tree
(perhaps we could define how to draw one tree, and then
place a bunch of trees)

• feasibility
– making a complex scene gets very difficult if you have to think

about the whole thing at the levels of rects and triangles and
ellipses

(perhaps we could define how to draw a tree and a car
and a house, and then position the tree and car and
house to make the scene)

CPSC 120: Principles of Computer Science • Fall 2025 3

Abstraction and Modularity

• abstraction
– be able to think of complex things in terms of higher level

concepts, instead of only as their component parts
– example

• separate the arrangement of trees and cars in the sketch from the details
of how to draw a tree or a car – think of the scene as an arrangement of
trees and cars, and a tree or a car as rects, ellipses, triangles

– goal is simplifying complexity

• modularity
– create distinct components that can be used in a variety of

situations
– example

• create a “tree” module so you can have a scene with lots of trees instead
of repeating the individual drawing commands over and over

– goals are to help with abstraction and to facilitate reuse

CPSC 120: Principles of Computer Science • Fall 2025 4

Functions

Functions (also known as procedures or subroutines or
methods) are a way of creating modules that do tasks.
• a list of instructions given a name

There are two parts to working with functions –
•

• a function definition associates a name with a list of
instructions
– “hey computer, here's what this name means, OK?”
– parameters allow the function definition to be a template into

which different values can be plugged (similar to variables)

• a function call tells the system to actually execute those
statements
– “hey computer, do that stuff now!”
– the call provides values for the parameters

CPSC 120: Principles of Computer Science • Fall 2025 5

Functions

We have been using system-defined functions already –

We have also written function definitions for functions with a
special role –

 void setup () { … }
 void draw () { … }
 void mouseClicked () { … }

 rectMode(CENTER);
 fill(255,0,0);
 stroke(0);
 rect(100,200,50,100);

 x = x+random(-5,5);

 y = map(noise(t),0,1,100,200);

function calls

function definitions

CPSC 120: Principles of Computer Science • Fall 2025 7

Programmer-Defined Functions

Many functions are defined by the system or provided by
libraries.

You can also define your own.

CPSC 120: Principles of Computer Science • Fall 2025 8

Programmer-Defined Functions

Functions generally have one of two jobs –
• do stuff

– e.g. size, background, fill, stroke, rectMode, ellipseMode,
rect, ellipse, …

• written as a statement by themselves

• compute a value for use elsewhere in the program
– e.g. random, noise, sin, cos, max, min, …

• written as an expression (or part of an expression) in a place where a
value is needed

We will consider specifically “do stuff” functions to draw
things.

CPSC 120: Principles of Computer Science • Fall 2025 9

Drawing Function Questions, Part 1

Do we need a drawing function?

Yes, if –
• a thing consists of more than a few shapes
• there is more than one copy of a thing

(including variations) in a single frame or over
a series of frames (animation or interaction)

For each drawing function identified, we need to consider
both the function definition and the function call(s).

CPSC 120: Principles of Computer Science • Fall 2025 10

Drawing Function Questions, Part 2

For the drawing function definition –
• What is being drawn?

– e.g. tree, car, …
– just one purpose!

• What differs from one copy to the next?
– position, size, color, …
– consider both multiple copies within one frame and “copies” over

multiple frames due to animation or interaction

• How is it drawn?
– include all necessary state (rectMode/ellipseMode, stroke,
fill, etc) as well as the shapes to be drawn

• draw a picture and label the necessary elements
– can use system variables and “what differs”

• it is legal to use animation variables but better to view that as “what
differs” instead

CPSC 120: Principles of Computer Science • Fall 2025 11

Drawing Function Questions, Part 3

For the function call(s) –

• What are the specific values for the “what differs” things?

CPSC 120: Principles of Computer Science • Fall 2025 12

Example
Consider the two trees in the scene.
• Do we need a drawing function?

→ yes, each tree has two shapes and there’s more than one tree

• What is being drawn?
→ a tree

• What differs from one copy to the next?
– position (both x and y)

• How is it drawn?
– dark green triangle, brown rectangle
– let “position” be the center of the bottom of the

trunk (red dot)

• What are the specific values for the “what
differs” things?
– tree on the left: x: 50, y: height-70
– tree in the middle: x: width/2, y: height-100

120

40

15

60

position (red dot) – (x,y)
rect center – (x,y-20)
triangle – (x-30,y-40),
(x,y-160), (x+30,y-40)

