

Correctness and Robustness

CPSC 225: Intermediate Programming • Spring 2025 2

Topics

• identifying correct behavior
– method contracts
– javadoc notation
– pre- and postconditions
– invariants

• ensuring correct behavior
– testing
– reasoning about correctness
– assertions

• debugging strategies

• avoiding errors
– defensive programming
– clean code practices

• robustness
– checking preconditions
– handling input
– dealing with error cases in

subroutines

• exceptions

CPSC 225: Intermediate Programming • Spring 2025 3

Correctness and Robustness

A correct module does what it is supposed to do when it is
used as intended.
• wrong behavior is the fault of the module's code

• correctness is always essential

A robust module behaves reasonably in all situations, even
when used incorrectly or when there's a problem outside of
the module's control.
• bad situation is not the module's fault (but allowing badness

to propagate is)

• how robust a module must be depends on its purpose
and application

CPSC 225: Intermediate Programming • Spring 2025 4

these are all good
things, but
correctness has a
specific meaning

CPSC 225: Intermediate Programming • Spring 2025 5

these are good
things, but not what
robustness refers to

CPSC 225: Intermediate Programming • Spring 2025 6

Correctness

• strategies for achieving correctness

– testing
• each test only verifies correct behavior in a specific situation
• with careful reasoning, a particular test can be expanded into a test case;

need a thorough set of test cases

– careful reasoning about program operation
• formal proofs assure correctness in all cases, but can be difficult and

impractical
• can combine reasoning with runtime checks

– error prevention
• language features that prevent or highlight mistakes
• coding practices to avoid or reduce problems (defensive programming)

• attention to correctness should occur throughout the
development process

CPSC 225: Intermediate Programming • Spring 2025 7

Specifying Correct Behavior

Achieving correctness requires specifying what the correct
behavior is.

We usually start with a description of the method or class –

• content
– methods – what the method does, what its parameters are for,

what it returns (if anything)
– classes – what the class represents

• written in comments

• “javadoc style” provides some structure
– helps you remember all the pieces
– allows for automatic generation of API documentation

CPSC 225: Intermediate Programming • Spring 2025 8

javadoc-Style Comments

• for methods and classes

don't worry
about @link,
@see, or HTML
tags like <p>

include
preconditions,
often in the
@param
description

for class
comments,
include
@author
authorname

CPSC 225: Intermediate Programming • Spring 2025 9

these are
all valid
comment
styles in
Java, but
the
javadoc
tool only
processes
/** */
comments

CPSC 225: Intermediate Programming • Spring 2025 10

but typically only
write javadoc style
comments for
public elements
such as constants

/** */ is a valid
comment syntax so
it’s not illegal inside
a method, but the
javadoc tool doesn’t
process it there

CPSC 225: Intermediate Programming • Spring 2025 11

/** */ is a valid
comment syntax so
it can be used
anywhere, but for
the javadoc tool it
can only go
immediately before
the element it
describes

CPSC 225: Intermediate Programming • Spring 2025 12

order of elements
 – description first (first sentence
should give an overview, additional
sentences / paragraphs provide detail)
 – @param next, in the order the
parameters are declared
 – @return last

format of @param –
@param name description

@param omits
parameter name

CPSC 225: Intermediate Programming • Spring 2025 13

Questions

As long as we’re conveying all the information, do we have
to use Javadoc-style comments specifically?

• yes

• it’s also a good idea
– the structure of Javadoc-style comments helps remind you of the

elements to include
– programmers are familiar with the style – makes it easier to

locate key information
– can automatically generate API documentation

CPSC 225: Intermediate Programming • Spring 2025 14

Public Preconditions

• address correct usage of public methods

• state expectations for the public values the method works
with
– method's parameters
– global variables or other state used by the method body

• only include conditions which could be violated at runtime
– e.g. for an integer parameter, a precondition could be that the

value must be > 0
– that the value of a parameter or variable must match the

declared type is not a precondition – type mismatches won't
compile

– that initialization done by a constructor has been done is not a
precondition – constructor can’t not have been called

• where do they go?
– include in the method comments, often in @param tag

“...does the right thing when used correctly...”

CPSC 225: Intermediate Programming • Spring 2025 15

this is a valid form
for a precondition
but it’s not
appropriate here –
it’s not illegal to have
a numerator ≤ 0

true, but it isn’t useful
to state something
that can’t be violated
at runtime

CPSC 225: Intermediate Programming • Spring 2025 16

Questions

Do preconditions include things about the return value?

• no, preconditions are about what is required in order for
the operation to run correctly

• postconditions address what is expected to be the case at
the end

CPSC 225: Intermediate Programming • Spring 2025 17

Questions

What does this syntax mean?

• ?: is called the conditional operator or ternary operator

condition ? expression1 : expression2

– the value of this expression is expression1 if condition is true
and expression2 if condition is false

if (a > b) {
 return a;
} else {
 return b;
}

equivalent to

CPSC 225: Intermediate Programming • Spring 2025 18

Testing

Testing refers to running the program and verifying that the
expected output is produced for the input provided.

There are many levels and types of testing.

Unit testing focuses on testing individual units of code –
such as methods.
• small pieces are easier to debug
• the whole program won't work if the individual parts don't

It doesn't replace overall system testing, but it helps localize
errors and ensure code coverage.

CPSC 225: Intermediate Programming • Spring 2025 19

Test Cases

A test case for a method has four components –

• a descriptive name which concisely identifies what the test
case is testing
– each test necessarily only tests a specific input, but that input can

represent a category of specific inputs for which the program carries
out the same steps

• a starting state
– the state of the object the method is invoked on, as well as the state of

anything else relevant to the test (other than parameters) – everything
that needs to be set up so the method being tested can be called

• the input
– values of the method's parameters, and anything else the method

might take in from outside (the method or program) as it executes (e.g.
user input)

• the expected result
– the return value, printed output, instance variable values, etc that

should result from the method's correct execution given the starting
state and input CPSC 225: Intermediate Programming • Spring 2025 20

Example

/**
 * Determine if the specified element is in the
 * array.
 *
 * @param array the array
 * @param elt element to look for
 * @return true if elt is in the array, false
 * otherwise
 */

public static boolean contains (int[] array,
 int elt) { … }

name contains

starting state n/a

input array – [30, 10, 40, 20]
elt – 10

expected result true

CPSC 225: Intermediate Programming • Spring 2025 21

Identifying Test Cases

• cover all of the different behaviors that the method may
have
– black box testing – test cases are derived from the specifications

of the method only, without looking at the method body
– tests the abstraction

• cover every line of code
– white box testing – test cases are based on analyzing the code

itself
– tests the implementation

CPSC 225: Intermediate Programming • Spring 2025 22

Example – Black Box Test Cases

/**
 * Determine if the specified element is in the
 * array.
 *
 * @param array the array
 * @param elt element to look for
 * @return true if elt is in the array, false
 * otherwise
 */

public static boolean contains (int[] array,
 int elt) { … }

• contains – present
– input

• array – [30, 10, 40, 20]
• elt – 10

– expected result – true

• contains – not present
– input

• array – [30, 10, 40, 20]
• elt – 50

– expected result – false

CPSC 225: Intermediate Programming • Spring 2025 23

Example – White Box Test Cases

public static boolean contains (int[] array,
 int elt) {
 for (int i = 0 ; i < array.length ; i++) {
 if (array[i] == elt) { return true; }
 }
 return false;
}

• loop body never executes
– 0 iterations – loop condition is false

the first time

• loop body executes at least
once
– if condition is true – loop exits

because array[i] == elt
– if condition is never true – loop

exits because i == array.length

• empty array (length 0)
– input – array [], elt 50
– expected result – false

• contains – present
– input – array [30, 10, 40, 20],

elt 10
– expected result – true

• contains – not present
– input – array [30, 10, 40, 20],

elt 50
– expected result – false CPSC 225: Intermediate Programming • Spring 2025 24

Being Thorough

• for black-box testing, cover all of the possible behaviors
as identified in the method contract
– e.g. for a boolean method, cover both the true result and the
false result

• for white-box testing, cover all of the code e.g.
– loops: 0 repetitions (condition is false the first time), at least 1

repetition (condition is true the first time, loop body is run at least
once)

– each case in an 'if' statement, including the case of none of them
(if possible)

– each combination of values in boolean expressions containing
&& and ||

CPSC 225: Intermediate Programming • Spring 2025 25

Being Thorough

More is not automatically better – redundant test cases just
waste time.

Testing correct things is also a waste of time – focus on test
cases for what is likely to fail.

– balance the consequences of missing a bug with the effort of
unnecessary testing

• don't write test cases for simple things where you can
confidently reason about the correctness of the code
– but bugs can still creep in to simple things, and simple things may

become less simple as development continues

• do write test cases if checking if something worked or not is
easier than reasoning about the correctness of the code
– but testing is not a perfect substitute for reasoning about correctness

• do test special cases and trouble spots where bugs often arise
– black box tests covering cases which often require unique code paths

CPSC 225: Intermediate Programming • Spring 2025 26

Being Thorough

• include the typical case(s) – e.g.
– middle element in a non-empty collection

public static boolean contains (int[] array,
 int elt) { … }

• contains – present middle
– input

• array – [30, 10, 40, 20]
• elt – 10

– expected result – true

CPSC 225: Intermediate Programming • Spring 2025 27

Being Thorough

• typical special cases – e.g.
– empty collections or collections with only one element
– end conditions – involving first or last element
– off-the-end conditions – before the beginning or after the end

public static boolean contains (int[] array,
 int elt) { … }

• contains – empty array

• contains – first element
– input

• array – [30, 10, 40, 20]
• elt – 30

– expected result – true

• contains – last element
– input

• array – [30, 10, 40, 20]
• elt – 20

– expected result – true

CPSC 225: Intermediate Programming • Spring 2025 28

Being Thorough

• typical bugs and trouble spots – e.g.
– off-by-one in counting loops – 1 repetition, max repetitions
– where null values can arise

• contains – single element
(present)
– input

• array – [30]
• elt – 30

– expected result – true

• contains – not present

public static boolean contains (int[] array,
 int elt) {
 for (int i = 0 ; i < array.length ; i++) {
 if (array[i] == elt) { return true; }
 }
 return false;
}

CPSC 225: Intermediate Programming • Spring 2025 29

Summary

• contains – present
(middle)
– input

• array – [30, 10, 40, 20]
• elt – 10

– expected result – true

• contains – not present
– input

• array – [30, 10, 40, 20]
• elt – 50

– expected result – false

• contains – empty array
– input

• array – []
• elt – 50

– expected result – false

• contains – first element
– input

• array – [30, 10, 40, 20]
• elt – 30

– expected result – true

• contains – last element
– input

• array – [30, 10, 40, 20]
• elt – 20

– expected result – true

• contains – single element
– input

• array – [30]
• elt – 30

– expected result – true

CPSC 225: Intermediate Programming • Spring 2025 30

Designing for Testing

Implementing test cases for class methods may require
access to private instance variables to set up starting state
or check the expected result.

• add what is needed, but try to grant as little extra access
as possible
– for testing code in the same package, use the default (no

keyword) access modifier rather than public
– add a getter method or constructor rather than making instance

variables less private
– consider returning a “safe” representation rather than granting

direct access
• e.g. toString() to return a string version of the contents instead of

returning the array of elements

– consider implementing the check (at least partially) within the
class rather than in the tester

