

CPSC 225: Intermediate Programming • Spring 2025 79

Defensive Programming

Defensive programming refers to programming practices
that help prevent bugs.

CPSC 225: Intermediate Programming • Spring 2025 80

Defensive Coding Practices

• always use {} for loop and conditional bodies

if (x < 0)
 x = -x;

if (x < 0)
 System.out.println(“x: “+x);
 x = -x;

if (x < 0) {
 x = -x;
}

legal, but easy to add
another line and get...

valid code, but incorrect
because x = -x has been
kicked out of the 'if' body

recommended solution

CPSC 225: Intermediate Programming • Spring 2025 81

Defensive Coding Practices

• don't ignore return values
– especially when they indicate success or failure of the operation

// get the substring before ,
String before =
 str.substring(0,str.indexOf(','));

int index = str.indexOf(',');
if (index == -1) { … } // handle error
String before = str.substring(0,index);

int index = str.indexOf(',');
assert index > -1;
String before = str.substring(0,index);

crashes if 'str'
doesn't contain ,

if it is valid
for 'str' not
to contain u

if 'str' is
known to
contain 'src'

CPSC 225: Intermediate Programming • Spring 2025 82

Defensive Coding Practices

• don't rely on default values
– initialize all variables when they are declared – including slots of

arrays if not partially full
– explicitly set settings when things are created

• don't rely on “pass through” behavior in conditionals –
cover all alternatives, even if expected to be impossible
int a = 0;
if (b > 100) { a = 2; }
else if (b > 10) { a = 1; }

– what if b ≤ 10?
• generate error if the case should be impossible
• include final else to set a = 0 otherwise

– (this is not about “do nothing” alternatives)

• don't trust outside data
– e.g. check that parameter values are legal

int a;
if (b > 100) { a = 2; }
else if (b > 10) { a = 1; }
else { a = 0; }

int a = 0; // for compiler
assert b > 10;
if (b > 100) { a = 2; }
else if (b > 10) { a = 1; }

CPSC 225: Intermediate Programming • Spring 2025 83

Defensive Coding Practices

Note the kinds of errors you often make and consider ways
to prevent them.

• e.g. always use for loops instead of while loops
– for loops have an obvious place for the update step
– for loops facilitate loop variables that are local to the loop, and

initialize them before the loop begins
• can help avoid problems with forgetting to initialize, especially in the inner

loop in a set of nested loops

CPSC 225: Intermediate Programming • Spring 2025 84

Defensive Coding Practices

for (int i = 0 ; i < 10 ; i++) {
 …
}

int i = 0;
while (i < 10) {
 …
 i++;
}
// i is still in scope

CPSC 225: Intermediate Programming • Spring 2025 85

Defensive Coding Practices

for (int i = 0 ; i < 10 ; i++) {
 for (int j = i+1 ; j < 10 ; j++) {
 …
 }
} int i = 0;

while (i < 10) {
 int j = i;
 while (j < 10) {
 …
 j++;
 }
 // j is still in scope
 i++;
}
// i is still in scope

int i = 0, j = i; is a
mistake

i++; j++; is a mistake

CPSC 225: Intermediate Programming • Spring 2025 86

Defensive Coding Practices

Note the kinds of errors you often make and consider ways
to prevent them.

• e.g. write the literal first in an equality comparison
– if (true == b) { … }

CPSC 225: Intermediate Programming • Spring 2025 87

Naming Practices

• good naming practices reduce confusion and potential
bugs

Uncle Bob picture credit:
By Angelacleancoder - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=88628927

Robert “Uncle Bob” Martin
American software engineer, 1952-
known for SOLID principles (OO design
principles), Agile Manifesto (software
development methodology)

[2008] note: some of Martin’s clean code principles
are controversial and viewed as outdated and some
go against language conventions or traditions, but it
is still valuable to understand the principles and the
intent behind them

CPSC 225: Intermediate Programming • Spring 2025 88Robert Martin, Clean Code: A Handbook of Agile Software Craftsmanship

public List<int[]> getFlaggedCells() {
 List<int[]> flaggedCells = new ArrayList<int[]>();
 for (int[] cell : gameboard) {
 if (cell[STATUS_VALUE] == FLAGGED) {
 flaggedCells.add(cell);
 }
 }
 return flaggedCells;
}

public List<Cell> getFlaggedCells() {
 List<Cell> flaggedCells = new ArrayList<Cell>();
 for (Cell cell : gameboard) {
 if (cell.isFlagged()) {
 flaggedCells.add(cell);
 }
 }
 return flaggedCells;
}

public List<int[]> getThem() {
 List<int[]> list1 = new ArrayList<int[]>();
 for (int[] x : theList) {
 if (x[0] == 4) {
 list1.add(x);
 }
 }
 return list1;
}

– what is in the list
being iterated
through?

– what is the
significance of the 0th
subscript of an item
(int[]) in that list?

– what is the
significance of the
value 4?

– how would you use
the list being
returned?

– what does this
function do?

Clean Code –
Names Should
Reveal Intent

CPSC 225: Intermediate Programming • Spring 2025 89

Clean Code –
Comments

Martin's clean code
principles prefer writing
code that doesn't need
comments to be
understandable – one
reason is that comments
can become out-of-date as
code is changed.

This can go overboard –
long names are unwieldy,
comments aren’t inherently
bad – but the idea of
choosing names that are
understandable on their
own is a good goal.

CPSC 225: Intermediate Programming • Spring 2025 90

Code Smells

• avoid short variable names in large scopes
– name length is a proxy for precision/amount of detail
– single-letter names should be limited to local variables used in a

limited context

for (Cell cell : getLivingCells()) {
 int count = countLivingNeighbors(cell);
 if (count == 2 || count == 3) {
 ng.add(cell);
 }
}

• cell and count are limited to a short
loop – a short, general name is fine
because the detail is clear from the
context (cell is a living cell and count is
the number of living neighbors); a longer
name is tedious and hinders
readability

• ng has a larger scope (so large that its
declaration and initialization aren't
visible), so it needs a longer, more
descriptive name in order to be
understood without its context – a
short name is cryptic

CPSC 225: Intermediate Programming • Spring 2025 91

Code Smells

• avoid long function names in large scopes
– length is a proxy for precision/amount of detail

public void computeNextGeneration () { ... }
private boolean isCellAlive (Cell c) { ... }
private int countLivingNeighbors (Cell c) { ... }

• public methods have a larger scope than
private methods

• methods with a larger scope are likely called
more often than those with a smaller scope
and also are more likely to have a higher
level of abstraction, so shorter, less detailed
names are better – step instead of
computeNextGeneration

• local methods are called less often and are
more likely to be at a lower level of
abstraction, so greater detail is appropriate
and longer names can act as a form of
documentation

CPSC 225: Intermediate Programming • Spring 2025 92

Questions

What is a good guideline to determine a short vs long
name?

• it’s less about the number of characters as such, and
more about the level of detail in the name

• variables
– short, general name is OK in a small scope since there’s context

to make it understandable
– longer, more specific name in a large scope in order to be

understood without the context

• methods
– short, general name is OK in a large scope because those

methods are more likely to be at a higher level of abstraction and
to be called more often

– longer, more specific name in a small scope is OK because likely
called less often and long name is a form of documentation for a
more specific task

CPSC 225: Intermediate Programming • Spring 2025 93

Clean Code –
Reduce Vertical
Scope

• reduce distance
between
declarations and
use
– declare as locally

as possible
– declare just

before first use

CPSC 225: Intermediate Programming • Spring 2025 94

Clean Code – Avoid Disinformation

• “accountList” makes it sound like the variable is of type
List (which then implies certain methods are applicable)
– be careful when words have a broader or more generic usage in

English but a more narrow technical meaning or connotation in
Java – look for an alternative if the term is appropriate only in
one sense

CPSC 225: Intermediate Programming • Spring 2025 95

Clean Code – Meaningful Distinctions

• distinction here is between the two parameters
– “from”, “to” clarify the distinction
– “pos1”, “pos2” does not

CPSC 225: Intermediate Programming • Spring 2025 96

Clean Code – One
Word Per Concept

• add (arithmetic) and add
(to a collection) are
different concepts
– use different words

• there are multiple ways to
add to a collection (at the
end, at a particular
position)
– use different words
– “append” is more

descriptive for add-at-end

CPSC 225: Intermediate Programming • Spring 2025 97

Clean Code

• “Pick one word per concept” means which of the following
is preferred?

– use overloaded terms when the uses all match the same sense
of the term and different terms for different senses

public int add (int a, int b) { return a+b; }

public double add (double a, double b) { return a+b; }

public int addInt (int a, int b) { return a+b; }

public double addDouble (double a, double b) {
 return a+b;
}

