Fundamental Tasks and Techniques

Big Picture

arrays
linked lists

searching, sorting, shuffling
efficiency

Array Syntax

One of the most fundamental things in programming is
storing and manipulating a collection of elements.

Languages like Java commonly provide two ways to store a
collection of elements —

arrays
linked lists

These are known as concrete data structures, in contrast to
abstract data types (which we will study later).

We'll also look at some fundamental tasks and concepts —
searching, sorting, shuffling
efficiency

CPSC 225: Intermediate Programming = Spring 2025

Array Syntax

ey [J—— [[[[|

declare an array variable
int[] array;

create the array itself (compartments)
array = new int[7];

initialize the compartments
for (int i = 0 ; i < array.length ; i++) {
array[i] = .;

}

access compartment i
array[il

length of the array (number of compartments)
array.length

o 1 2 3 4 5 6

array | ——10| 5 |8 [17] 3] 2]20]

two ways to create and initialize an array in one step
initializer list
int[] array = { 10, 5, 8, 17, 3, 2, 20 };

the initializer list syntax can only be used when declaring a new array
variable

array literal

array = new int[] { 10, 5, 8, 17, 3, 2, 20 };
func(new int[] { 10, 5, 8, 17, 3, 2, 20 });

an array literal is an expression which can be used anywhere a value of
the desired type is allowed

CPSC 225: Intermediate Programming + Spring 2025

Array Syntax

the typical way to go through every slot of an array in
order to process each element is with a loop that counts
through the array indexes

for (int 1 = 0 ; i < array.length ; i++) {

System.out.println(array[il);
}

a more compact alternative is the for-each loop

for (int elt : array) {
System.out.println(elt);
}

each time through the loop body, elt is assigned another value from
array

provides a common way to go through many kinds of collections
(not just arrays)

can only be used for traversal — cannot assign to elt to change

the contents of the collection

Fixed-Size Arrays

number of things doesn't change, and is known when the
array is created

0o 1 2 3 4 5 6
array [——{10] 5 [8]17]3]2]20]

legal indexes are 0..array.length-1
loops accessing all slots go up to slot array.length-1

int[] array new int[n];
for (int i 0 ; 1 < array.length ; i++) {
array[i] = 0;

}

CPSC 225: Intermediate Programming + Spring 2025

Array Usage

Patterns of usage for arrays used as containers —

number of things doesn't change, and is known when the
array is created

number of things can change, but the maximum number
is known when the array is created

- patrtially full array, where not all of the slots will be used all the
time

number of things can change, but the maximum isn't
known and/or the maximum is much bigger than the
minimum
- dynamic array, which is resized as needed to ensure enough
slots without having too many extras

“dynamic” refers specifically to resizing as needed, but dynamic arrays will
also always be partially full arrays

CPSC 225: Intermediate Programming = Spring 2025

Partially-Full Arrays

If not all of the slots are used, how do we know which ones
have values and which have junk*?

Which of the following is a common way to keep track of the elementsina
partially full array?

resizing every time an

Answer Respondents Percentage element is added means
never having to deal with a

resizing the array

X everytime an 1 7% L. . q
element is added but it is expensive to resize
frequently)
using a boolean
» Aarraytomarkslots 1 72— » these are ways to distinguish
{hat contain ¥ between values and junk
elements J ?
but aren’t what “partially full
« storingnuilor0in M 7% arrays” refers to
empty slots .
* there’s no such thing as an
using only the first n empty spot — there’s always
slots of the array some value there

and storing the

v
current number of
elements (n)ina o
separate variable but it isn't necessary because

they aren't ever looked at

you can fill the extra slots with a

special value such as null or 0,

. partially full array (convenient,

Partially-Full Arrays

If not all of the slots are used, how do we know which ones
have values and which have junk?

» keep all the used slots together (at the beginning is
convenient)

* maintain an additional variable to store the number of
slots in use
0 1 2 3 4 5 &6

array [——>{10] 5 [8]17][3] | |
size

Distinguish capacity (the number of slots) from size (the
number of slots used).
» though be aware that size is often used in place of capacity

CPSC 225 Intermediate Programming = Spring 2025

Partially Full Arrays

When using a partially full array, what should happen when adding an
element?

put it at index
count-1, where

X countisthe number 1 7%
of elements already
in the array

put itatindex
count, where count

S is the number of ? 60%
elements already in
thearray

put it at index
count+1, where

X countisthe number 3 20%
of elements already
in the array

0 1 2 3 4 5 6
array | +——10]5[8[17]3] | |
COUnt

CPSC 225: Intermediate Programming + Spring 2025

Partially Full Arrays

‘When using a partially full array, what should happen when adding an

element?

Answer Respondents Percentage

putitatindex O,
shifting other

132 —m thisis possible, but shifting
takes time

2 3 4 5 6

s lirls] | |

x elements out of the 2
way to make room
putitatindex O,
x overwriting what is 0 0%
there
array ﬂ—ﬂ 10 ‘ 5 ‘

2 3 4 5 6

array E'—ﬂ 24 ‘ 10 ‘

58 fi[s] |

CPSC 225: Intermediate Programming = Spring 2025

Dynamic Arrays

The capacity of an array is fixed when it is created.

What typically happens when a dynamic array becomes full?

Answer Respondents

Percentage
creates space, but

allocate a new array
with double the
previous size and
copy elements

immediately have to
0% grow again when
there’s another
insertion — doubling in

increase the array
size by 1 element at

* atime so as to not 5
waste space
throw an exception

x . 0
and stop execution
automatically

x overwrite the oldest 1

data

/" size means that
additional insertions
can happen without

having to grow again
right away

33%

0%
there may be situations

where this is
appropriate, but it is

7% ————»
not a general-purpose

strategy (also have to

CPSC 225: Intermediate Programming + Spring 2025

—— SOMEhOW keep track of
the oldest thing)

Dynamic Arrays

The capacity of an array is fixed when it is created.
Growing (or shrinking) an array requires —

creating a new array with a larger (or smaller) capacity
0O 1 2 3 4 5 6 7 8 9 10 11 12 13

reerrey | [[[[[TTTTTTTT]

copying the elements from the old array to the new
0 1 2 3 4 5 6

ooy [——[10] 5 [8 [wr] 3] 2 [=0]
wl | i

4 5 6 7 8 9 10 11 12 13

nevarrey | |5 [e[ufafafn] [[| []]]

replacing the old array with the new
o 1 2 3 4 5 6 7 8 9 10 11 12 13

=
arrey [g——wsfeu[a]afo] [T [T]]:

Figuring Out Array Operations

Strategy —

create an example (not too big, not too small)
draw before and after pictures

identify what needs to be changed

make the changes

consider special cases — empty, first thing, last thing, ...
create an example
draw before and after pictures
trace current algorithm

if something goes wrong, fix general case or write code to
identify the case and do the right thing

CPSC 225: Intermediate Programming + Spring 2025 15

Arrays as Collections

For collections, we typically need four kinds of operations —

insert a new element
remove an existing element
access an element

size

For arrays, we’ll consider —

insert at end
remove from the end

insert at index i
remove index i

get the element at index i
size =

S

Figuring Out Array Operations

removeAtEnd() —

o 1 2 3 4 5 6

elementst—ﬂ10‘5‘8‘l7‘3‘ ‘ ‘
size

o 1 2

elements H—ﬂ 10 ‘ 5 ‘
size (n

~ observations -
- size decreases by 1
- only one slot changes in the array

6

T2 -

oo

CPSC 225: Intermediate Programming + Spring 2025 16

Figuring Out Array Operations

removeAt(1) —

0O 1 2 3 4 5 &6
elements E—>‘ 10 ‘ 5 ‘ 8 ‘ 17 ‘ 3 ‘ ‘ ‘
size m

5 6

0o 1 2 3 4
elements_ E—ﬂ 10 ‘<8>‘<17>‘< 3>‘ ‘ ‘ ‘
size_ (n

observations -
- size decreases by 1
- many things in the array change - loop

- new value for slot i is what was at slot i+1 =

17

CPSC 225 Intermediate Programming = Spring 2025

Figuring Out Array Operations

removeAt special cases —
* removeAt(0)
* removeAt(4)

o 1 2 3 4

5

6

elements ﬂ—ﬂ 10‘ 5 ‘ 8 ‘17‘ 3 ‘

CPSC 225: Intermediate Programming = Spring 2025

