

Fundamental Tasks and Techniques

• arrays
• linked lists

• searching, sorting, shuffling

• efficiency

CPSC 225: Intermediate Programming • Spring 2025 2

Big Picture

One of the most fundamental things in programming is
storing and manipulating a collection of elements.

Languages like Java commonly provide two ways to store a
collection of elements –
• arrays
• linked lists

These are known as concrete data structures, in contrast to
abstract data types (which we will study later).

We’ll also look at some fundamental tasks and concepts –
• searching, sorting, shuffling
• efficiency

CPSC 225: Intermediate Programming • Spring 2025 3

Array Syntax

• declare an array variable
int[] array;

• create the array itself (compartments)
array = new int[7];

• initialize the compartments
for (int i = 0 ; i < array.length ; i++) {
 array[i] = …;
}

• access compartment i
array[i]

• length of the array (number of compartments)
array.length

0 1 2 3 4 5 6
array

CPSC 225: Intermediate Programming • Spring 2025 4

Array Syntax

• two ways to create and initialize an array in one step

– initializer list

int[] array = { 10, 5, 8, 17, 3, 2, 20 };

• the initializer list syntax can only be used when declaring a new array
variable

– array literal

array = new int[] { 10, 5, 8, 17, 3, 2, 20 };
func(new int[] { 10, 5, 8, 17, 3, 2, 20 });

• an array literal is an expression which can be used anywhere a value of
the desired type is allowed

0 1 2 3 4 5 6

10 5 8 17 3 2 20array

CPSC 225: Intermediate Programming • Spring 2025 5

Array Syntax

• the typical way to go through every slot of an array in
order to process each element is with a loop that counts
through the array indexes

• a more compact alternative is the for-each loop

• each time through the loop body, elt is assigned another value from
array

– provides a common way to go through many kinds of collections
(not just arrays)

– can only be used for traversal – cannot assign to elt to change
the contents of the collection

for (int i = 0 ; i < array.length ; i++) {
 System.out.println(array[i]);
}

for (int elt : array) {
 System.out.println(elt);
}

CPSC 225: Intermediate Programming • Spring 2025 6

Array Usage

Patterns of usage for arrays used as containers –

• number of things doesn't change, and is known when the
array is created

• number of things can change, but the maximum number
is known when the array is created

→ partially full array, where not all of the slots will be used all the
time

• number of things can change, but the maximum isn't
known and/or the maximum is much bigger than the
minimum

→ dynamic array, which is resized as needed to ensure enough
slots without having too many extras

• “dynamic” refers specifically to resizing as needed, but dynamic arrays will
also always be partially full arrays

CPSC 225: Intermediate Programming • Spring 2025 7

Fixed-Size Arrays

• number of things doesn't change, and is known when the
array is created

– legal indexes are 0..array.length-1
– loops accessing all slots go up to slot array.length-1

int[] array = new int[n];
for (int i = 0 ; i < array.length ; i++) {
 array[i] = 0;
}

0 1 2 3 4 5 6

10 5 8 17 3 2 20array

CPSC 225: Intermediate Programming • Spring 2025 8

Partially-Full Arrays

If not all of the slots are used, how do we know which ones
have values and which have junk*?

resizing every time an
element is added means
never having to deal with a
partially full array (convenient,
but it is expensive to resize
frequently)

these are ways to distinguish
between values and junk,
but aren’t what “partially full
arrays” refers to

* there’s no such thing as an
empty spot – there’s always
some value there
you can fill the extra slots with a
special value such as null or 0,
but it isn’t necessary because
they aren’t ever looked at

CPSC 225: Intermediate Programming • Spring 2025 9

Partially-Full Arrays

If not all of the slots are used, how do we know which ones
have values and which have junk?

• keep all the used slots together (at the beginning is
convenient)

• maintain an additional variable to store the number of
slots in use

Distinguish capacity (the number of slots) from size (the
number of slots used).
• though be aware that size is often used in place of capacity

0 1 2 3 4 5 6

10 5 8 17 3array

size 5

CPSC 225: Intermediate Programming • Spring 2025 10

Partially Full Arrays

this is possible, but shifting
takes time

0 1 2 3 4 5 6

10 5 8 17 3array

0 1 2 3 4 5 6

24 10 5 8 17 3array

CPSC 225: Intermediate Programming • Spring 2025 11

Partially Full Arrays

0 1 2 3 4 5 6

10 5 8 17 3array

count 5

CPSC 225: Intermediate Programming • Spring 2025 12

Dynamic Arrays

The capacity of an array is fixed when it is created.

creates space, but
immediately have to
grow again when
there’s another
insertion – doubling in
size means that
additional insertions
can happen without
having to grow again
right away

there may be situations
where this is
appropriate, but it is
not a general-purpose
strategy (also have to
somehow keep track of
the oldest thing)

CPSC 225: Intermediate Programming • Spring 2025 13

Dynamic Arrays

The capacity of an array is fixed when it is created.
Growing (or shrinking) an array requires –
• creating a new array with a larger (or smaller) capacity

• copying the elements from the old array to the new

• replacing the old array with the new

0 1 2 3 4 5 6

10 5 8 17 3 2 20array

size 7

0 1 2 3 4 5 6 7 8 9 10 11 12 13

newarray

0 1 2 3 4 5 6 7 8 9 10 11 12 13

10 5 8 17 3 2 20newarray

0 1 2 3 4 5 6 7 8 9 10 11 12 13

10 5 8 17 3 2 20array
CPSC 225: Intermediate Programming • Spring 2025 14

Arrays as Collections

For collections, we typically need four kinds of operations –

• insert a new element
• remove an existing element
• access an element
• size

For arrays, we’ll consider –

• insert at end
• remove from the end

• insert at index i
• remove index i

• get the element at index i
• size

CPSC 225: Intermediate Programming • Spring 2025 15

Figuring Out Array Operations

Strategy –

• create an example (not too big, not too small)
• draw before and after pictures
• identify what needs to be changed
• make the changes

• consider special cases – empty, first thing, last thing, …
– create an example
– draw before and after pictures
– trace current algorithm
– if something goes wrong, fix general case or write code to

identify the case and do the right thing

CPSC 225: Intermediate Programming • Spring 2025 16

Figuring Out Array Operations

removeAtEnd() –

0 1 2 3 4 5 6

10 5 8 17 3elements_

size_ 5

0 1 2 3 4 5 6

10 5 8 17elements_

size_ 4
observations –
 – size decreases by 1
 – only one slot changes in the array

CPSC 225: Intermediate Programming • Spring 2025 17

Figuring Out Array Operations

removeAt(1) –

0 1 2 3 4 5 6

10 5 8 17 3elements_

size_ 5

0 1 2 3 4 5 6

10 8 17 3elements_

size_ 4
observations –
 – size decreases by 1
 – many things in the array change loop→
 – new value for slot i is what was at slot i+1

CPSC 225: Intermediate Programming • Spring 2025 18

Figuring Out Array Operations

removeAt special cases –
• removeAt(0)
• removeAt(4)

0 1 2 3 4 5 6

10 5 8 17 3elements_

size_ 5

